Facile fabrication of tetragonal phase single-crystalline BaTiO3 terrace-like dendrite by a simple solvothermal method and its piezocatalytic properties

[1]  Zheng Wu,et al.  Piezoelectric BaTiO3 with the milling treatment for highly efficient piezocatalysis under vibration , 2022, Journal of Alloys and Compounds.

[2]  Yanjing Su,et al.  Ultrahigh piezocatalytic capability in eco-friendly BaTiO3 nanosheets promoted by 2D morphology engineering. , 2021, Journal of colloid and interface science.

[3]  Jingji Zhang,et al.  Oxalic acid functionalization of BaTiO3 nanobelts for promoting their piezo-degradation organic contaminants , 2021 .

[4]  Jianzhi Gao,et al.  In-situ generation of oxygen vacancies and metallic bismuth from (BiO)2CO3 via N2-assisted thermal-treatment for efficient selective photocatalytic NO removal , 2021 .

[5]  Zao Yi,et al.  Piezocatalytic degradation of methylene blue, tetrabromobisphenol A and tetracycline hydrochloride using Bi4Ti3O12 with different morphologies , 2021 .

[6]  R. Vaish,et al.  Transparent ferroelectric glass–ceramics for wastewater treatment by piezocatalysis , 2020, Communications Materials.

[7]  Y. Hu,et al.  A comprehensive review on catalysts for electrocatalytic and photoelectrocatalytic degradation of antibiotics , 2020 .

[8]  H. Qiu,et al.  Piezotronic effect boosted photocatalytic performance of heterostructured BaTiO3/TiO2 nanofibers for degradation of organic pollutants , 2020 .

[9]  C. Shuai,et al.  A strawberry-like Ag-decorated barium titanate enhances piezoelectric and antibacterial activities of polymer scaffold , 2020 .

[10]  Huajun Sun,et al.  Significantly enhanced piezo-photocatalytic capability in BaTiO3 nanowires for degrading organic dye , 2020, Journal of Materiomics.

[11]  Chunying Chao,et al.  Ferroelectric polarization-enhanced photocatalytic properties and photo-induced charge carrier behavior of Au/BaTiO3 , 2020, Journal of Alloys and Compounds.

[12]  Chuan-Fu Lin,et al.  Insights into the enhanced adsorption/photocatalysis mechanism of a Bi4O5Br2/g-C3N4 nanosheet , 2020 .

[13]  Chengchao Jin,et al.  Synthesizing BaTiO3 nanostructures to explore morphological influence, kinetics and mechanism of piezocatalytic dye degradation. , 2020, ACS applied materials & interfaces.

[14]  Chenghua Sun,et al.  TiO2-Seeded Hydrothermal Growth of Spherical BaTiO3 Nanocrystals for Capacitor Energy-Storage Application , 2020 .

[15]  D. Bao,et al.  BaTiO3 nanosheets and caps grown on TiO2 nanorod arrays as thin-film catalysts for piezocatalytic applications. , 2020, ACS applied materials & interfaces.

[16]  R. Vaish,et al.  Exploring the piezocatalytic dye degradation capability of lithium niobate , 2020 .

[17]  Hai Bang Truong,et al.  Recent advances in the characterization and the treatment methods of effluent organic matter , 2020 .

[18]  Haitao Huang,et al.  Enhanced piezoelectric-induced catalysis of SrTiO3 nanocrystal with well-defined facets under ultrasonic vibration. , 2020, Ultrasonics sonochemistry.

[19]  Lianmeng Zhang,et al.  Effect of NaOH concentration on formation of Ba4Ti13O30 and BaTi5O11 nanocrystals prepared by hydrothermal method , 2019, Materials Letters.

[20]  B. Ding,et al.  Polymer Template Synthesis of Flexible BaTiO3 Crystal Nanofibers , 2019, Advanced Functional Materials.

[21]  Ling Zhang,et al.  Efficient piezo-catalytic hydrogen peroxide production from water and oxygen over graphitic carbon nitride , 2019, Journal of Materials Chemistry A.

[22]  Huajun Sun,et al.  Modulating Photovoltaic Conversion Efficiency of BiFeO3-Based Ferroelectric Films by the Introduction of Electron Transport Layers , 2019, ACS Applied Energy Materials.

[23]  Ya Yang,et al.  Piezoelectric material-polymer composite porous foam for efficient dye degradation via the piezo-catalytic effect. , 2019, ACS applied materials & interfaces.

[24]  Jiangping Ma,et al.  Lead-free sodium niobate nanowires with strong piezo-catalysis for dye wastewater degradation , 2019, Ceramics International.

[25]  I. Lo,et al.  Enhanced trimethoxypyrimidine degradation by piezophotocatalysis of BaTiO3/Ag3PO4 using mechanical vibration and visible light simultaneously , 2019, Environmental Science: Nano.

[26]  Lang Wang,et al.  Ferroelectric BaTiO3@ZnO heterostructure nanofibers with enhanced pyroelectrically-driven-catalysis , 2019, Ceramics International.

[27]  Chengyi Song,et al.  Pyroelectric Synthesis of Metal–BaTiO3 Hybrid Nanoparticles with Enhanced Pyrocatalytic Performance , 2019, ACS Sustainable Chemistry & Engineering.

[28]  L. Devi,et al.  Synthesis of BaTiO3/α-S8 composite for enhanced photocatalytic activity under UV/Solar light in comparison with α-S8 and BaTiO3 photocatalysts: Effect of spontaneous polarization , 2018, Materials Today Communications.

[29]  Yalin Lu,et al.  Sonocatalysis of the magnetic recyclable layered perovskite oxides. , 2018, Ultrasonics sonochemistry.

[30]  Haitao Huang,et al.  Piezoelectrically/pyroelectrically-driven vibration/cold-hot energy harvesting for mechano-/pyro- bi-catalytic dye decomposition of NaNbO3 nanofibers , 2018, Nano Energy.

[31]  H. Akyıldız,et al.  Photocatalytic activity and dielectric properties of hydrothermally derived tetragonal BaTiO3 nanoparticles using TiO2 nanofibers , 2018, Journal of Alloys and Compounds.

[32]  D. Bhat,et al.  Hierarchical Porous Batio3 Nano-Hexagons as A Visible Light Photocatalyst , 2018, International Journal of Engineering & Technology.

[33]  D. Bao,et al.  Silver modified barium titanate as a highly efficient piezocatalyst , 2018 .

[34]  Lang Wang,et al.  Strong piezo-electro-chemical effect of piezoelectric BaTiO3 nanofibers for vibration-catalysis , 2018, Journal of Alloys and Compounds.

[35]  Zengmei Wang,et al.  Direct degradation of dyes by piezoelectric fibers through scavenging low frequency vibration , 2018, Chemical Physics Letters.

[36]  Qi Xu,et al.  Insights into the Role of Ferroelectric Polarization in Piezocatalysis of Nanocrystalline BaTiO3. , 2018, ACS applied materials & interfaces.

[37]  D. Bao,et al.  Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration , 2018 .

[38]  A. Alizadeh,et al.  Metalloporphyrin/dendrimer-decorated MCM-41 biomimetic hybrid catalysts: high stability combined with facile catalyst recyclability , 2018, Journal of Porous Materials.

[39]  L. Wan,et al.  Crystallinity-Modulated Electrocatalytic Activity of a Nickel(II) Borate Thin Layer on Ni3 B for Efficient Water Oxidation. , 2017, Angewandte Chemie.

[40]  K. Zhao,et al.  A simple one-step hydrothermal synthesis and photocatalysis of bowl-like BaTiO3 nanoparticles , 2017 .

[41]  Q. Lu,et al.  Topochemical synthesis and photocatalytic activity of 3D hierarchical BaTiO3 microspheres constructed from crystal-axis-oriented nanosheets. , 2017, Dalton transactions.

[42]  G. Han,et al.  A simple solvothermal process to synthesize CaTiO3 microspheres and its photocatalytic properties , 2015 .

[43]  Y. Ni,et al.  Simple hydrothermal synthesis and photocatalytic performance of coral-like BaTiO3 nanostructures , 2015 .

[44]  A. Naudí,et al.  Grain Size and Lattice Parameter's Influence on Band Gap of SnS Thin Nano-crystalline Films , 2014, 1411.2002.

[45]  R. Ahuja,et al.  Mono- and co-doped NaTaO3 for visible light photocatalysis. , 2014, Physical chemistry chemical physics : PCCP.

[46]  G. Han,et al.  Controllable synthesis of CaTi2O4(OH)2 nanoflakes by a facile template-free process and its properties , 2013 .

[47]  Gang Xu,et al.  Surfactant-free fabrication of CaTiO3 butterfly-like dendrite via a simple one-step hydrothermal route , 2012 .

[48]  Xiao Wei,et al.  Hydrothermal synthesis of single-crystal BaTiO3 dendrites , 2009 .

[49]  I. Reaney,et al.  Hydrothermal Synthesis and Crystal Growth Studies of BaTiO3 Using Ti Nanotube Precursors , 2008 .

[50]  Liqiu Wang,et al.  Phase Evolution of BaTiO3 Nanoparticles: An Identification of BaTi2O5 Intermediate Phase in Calcined Stearic Acid Gel , 2008 .