The crystal structure analysis of group B Streptococcus sortase C1: a model for the "lid" movement upon substrate binding.

[1]  S. Narayana,et al.  Structural Differences between the Streptococcus agalactiae Housekeeping and Pilus-Specific Sortases: SrtA and SrtC1 , 2011, PloS one.

[2]  L. Eriksson,et al.  Structural changes of Listeria monocytogenes sortase A: A key to understanding the catalytic mechanism , 2011, Proteins.

[3]  S. Narayana,et al.  A model for group B Streptococcus pilus type 1: the structure of a 35-kDa C-terminal fragment of the major pilin GBS80. , 2011, Journal of molecular biology.

[4]  Teruyuki Nagamune,et al.  Enhancement of sortase A-mediated protein ligation by inducing a β-hairpin structure around the ligation site. , 2011, Chemical communications.

[5]  Karina Persson Structure of the sortase AcSrtC-1 from Actinomyces oris. , 2011, Acta crystallographica. Section D, Biological crystallography.

[6]  M. D'Onofrio,et al.  Structure analysis and site‐directed mutagenesis of defined key residues and motives for pilus‐related sortase C1 in group B Streptococcus , 2011, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[7]  S. Narayana,et al.  Preliminary crystallographic study of the Streptococcus agalactiae sortases, sortase A and sortase C1. , 2010 .

[8]  Jinghua Yang,et al.  The Actinomyces oris type 2 fimbrial shaft FimA mediates co‐aggregation with oral streptococci, adherence to red blood cells and biofilm development , 2010, Molecular microbiology.

[9]  M. Soriani,et al.  Relevance of pili in pathogenic streptococci pathogenesis and vaccine development. , 2010, Future microbiology.

[10]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[11]  A. D. Di Guilmi,et al.  Sortase activity is controlled by a flexible lid in the pilus biogenesis mechanism of gram-positive pathogens. , 2009, Biochemistry.

[12]  S. Normark,et al.  Two crystal structures of pneumococcal pilus sortase C provide novel insights into catalysis and substrate specificity. , 2009, Journal of molecular biology.

[13]  E. A. Fadeev,et al.  The Structure of the Staphylococcus aureus Sortase-Substrate Complex Reveals How the Universally Conserved LPXTG Sorting Signal Is Recognized* , 2009, The Journal of Biological Chemistry.

[14]  Asis Das,et al.  Acyl Enzyme Intermediates in Sortase-Catalyzed Pilus Morphogenesis in Gram-Positive Bacteria , 2009, Journal of bacteriology.

[15]  T. Johnson,et al.  Active-site gating regulates substrate selectivity in a chymotrypsin-like serine protease the structure of haemophilus influenzae immunoglobulin A1 protease. , 2009, Journal of molecular biology.

[16]  E. Baker,et al.  Pili in Gram-negative and Gram-positive bacteria — structure, assembly and their role in disease , 2009, Cellular and Molecular Life Sciences.

[17]  Guy Schoehn,et al.  Sortase-mediated pilus fiber biogenesis in Streptococcus pneumoniae. , 2008, Structure.

[18]  Anjali Mandlik,et al.  The molecular switch that activates the cell wall anchoring step of pilus assembly in gram-positive bacteria , 2008, Proceedings of the National Academy of Sciences.

[19]  G. Grandi,et al.  Sortase A Utilizes an Ancillary Protein Anchor for Efficient Cell Wall Anchoring of Pili in Streptococcus agalactiae , 2008, Infection and Immunity.

[20]  D. McCafferty,et al.  Mutagenesis Studies of Substrate Recognition and Catalysis in the Sortase A Transpeptidase from Staphylococcus aureus* , 2008, Journal of Biological Chemistry.

[21]  W. Schaffner,et al.  Epidemiology of invasive group B streptococcal disease in the United States, 1999-2005. , 2008, JAMA.

[22]  N. Khardori Epidemiology of Invasive Group B Streptococcal Disease in the United States, 1999-2005 , 2008 .

[23]  Anjali Mandlik,et al.  Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. , 2008, Trends in microbiology.

[24]  Anjali Mandlik,et al.  Housekeeping sortase facilitates the cell wall anchoring of pilus polymers in Corynebacterium diphtheriae , 2007, Molecular microbiology.

[25]  L. Marraffini,et al.  Assembly of pili on the surface of Bacillus cereus vegetative cells , 2007, Molecular microbiology.

[26]  Anjali Mandlik,et al.  Corynebacterium diphtheriae employs specific minor pilins to target human pharyngeal epithelial cells , 2007, Molecular microbiology.

[27]  Asis Das,et al.  Sortase-Catalyzed Assembly of Distinct Heteromeric Fimbriae in Actinomyces naeslundii , 2007, Journal of bacteriology.

[28]  R. Rappuoli,et al.  Group B Streptococcus: global incidence and vaccine development , 2006, Nature Reviews Microbiology.

[29]  D. Zähner,et al.  Pili with strong attachments: Gram‐positive bacteria do it differently , 2006, Molecular microbiology.

[30]  H. Ton-That,et al.  Type III Pilus of Corynebacteria: Pilus Length Is Determined by the Level of Its Major Pilin Subunit , 2006, Journal of bacteriology.

[31]  I. Margarit,et al.  Identification of novel genomic islands coding for antigenic pilus‐like structures in Streptococcus agalactiae , 2006, Molecular microbiology.

[32]  Rino Rappuoli,et al.  Pili in Gram-positive pathogens , 2006, Nature Reviews Microbiology.

[33]  S. Guadagnini,et al.  Assembly and role of pili in group B streptococci , 2006, Molecular microbiology.

[34]  R. Rappuoli,et al.  A pneumococcal pilus influences virulence and host inflammatory responses. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[35]  H. Ton-That,et al.  Assembly of Distinct Pilus Structures on the Surface of Corynebacterium diphtheriae , 2006, Journal of bacteriology.

[36]  G. Bensi,et al.  Group A Streptococcus produce pilus-like structures containing protective antigens and Lancefield T antigens , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Liam J. McGuffin,et al.  Protein structure prediction servers at University College London , 2005, Nucleic Acids Res..

[38]  P. Glaser,et al.  The SrtA Sortase of Streptococcus agalactiae Is Required for Cell Wall Anchoring of Proteins Containing the LPXTG Motif, for Adhesion to Epithelial Cells, and for Colonization of the Mouse Intestine , 2005, Infection and Immunity.

[39]  S. Dramsi,et al.  Sorting sortases: a nomenclature proposal for the various sortases of Gram-positive bacteria. , 2005, Research in microbiology.

[40]  Otto Dideberg,et al.  Active site restructuring regulates ligand recognition in class A penicillin-binding proteins. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[41]  S. Narayana,et al.  Crystal Structures of Staphylococcus aureus Sortase A and Its Substrate Complex* , 2004, Journal of Biological Chemistry.

[42]  O. Schneewind,et al.  Assembly of pili in Gram-positive bacteria. , 2004, Trends in microbiology.

[43]  S. Narayana,et al.  The structure of sortase B, a cysteine transpeptidase that tethers surface protein to the Staphylococcus aureus cell wall. , 2004, Structure.

[44]  A. McAdam,et al.  Resistance of Group B Streptococcus to Selected Antibiotics, Including Erythromycin and Clindamycin , 2004, Journal of Clinical Microbiology.

[45]  S. Faro,et al.  Antibiotic resistance patterns of group B streptococcal clinical isolates. , 2004, Infectious diseases in obstetrics and gynecology.

[46]  O. Schneewind,et al.  Assembly of pili on the surface of Corynebacterium diphtheriae , 2003, Molecular microbiology.

[47]  A. Tomasz,et al.  Inactivation of the srtA Gene Affects Localization of Surface Proteins and Decreases Adhesion of Streptococcus pneumoniae to Human Pharyngeal Cells In Vitro , 2003, Infection and Immunity.

[48]  Z. Otwinowski,et al.  Multiparametric scaling of diffraction intensities. , 2003, Acta crystallographica. Section A, Foundations of crystallography.

[49]  S. Ha,et al.  Crystal Structure of the Protease Domain of a Heat-shock Protein HtrA from Thermotoga maritima * , 2003, The Journal of Biological Chemistry.

[50]  J. Gough The SUPERFAMILY database in structural genomics. , 2002, Acta crystallographica. Section D, Biological crystallography.

[51]  High-throughput structure determination. Proceedings of the 2002 CCP4 (Collaborative Computational Project in Macromolecular Crystallography) study weekend. January, 2002. York, United Kingdom. , 2002, Acta crystallographica. Section D, Biological crystallography.

[52]  M. Farley Group B streptococcal disease in nonpregnant adults. , 2001, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[53]  J. Troendle,et al.  Antibiotic susceptibility profiles for group B streptococci isolated from neonates, 1995-1998. , 2000, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[54]  A. Schuchat,et al.  Group B streptococcal disease in the era of intrapartum antibiotic prophylaxis. , 2000, The New England journal of medicine.

[55]  J. Pflugrath,et al.  The finer things in X-ray diffraction data collection. , 1999, Acta crystallographica. Section D, Biological crystallography.

[56]  P. Bornick,et al.  Change in antibiotic resistance of group B streptococcus: impact on intrapartum management. , 1999, American journal of obstetrics and gynecology.

[57]  J. D. Clark,et al.  Crystal Structure of Human Cytosolic Phospholipase A2 Reveals a Novel Topology and Catalytic Mechanism , 1999, Cell.

[58]  Thomas C. Terwilliger,et al.  Automated MAD and MIR structure solution , 1999, Acta crystallographica. Section D, Biological crystallography.

[59]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[60]  A. Schuchat Epidemiology of Group B Streptococcal Disease in the United States: Shifting Paradigms , 1998, Clinical Microbiology Reviews.

[61]  G. McGaughey,et al.  pi-Stacking interactions. Alive and well in proteins. , 1998, The Journal of biological chemistry.

[62]  S. Doublié Preparation of selenomethionyl proteins for phase determination. , 1997, Methods in enzymology.

[63]  R. Liddington,et al.  Two conformations of the integrin A-domain (I-domain): a pathway for activation? , 1995, Structure.

[64]  E. Plow,et al.  Integrin-ligand interactions: a year in review. , 1994, Current opinion in cell biology.

[65]  M Karplus,et al.  Anatomy of a conformational change: hinged "lid" motion of the triosephosphate isomerase loop. , 1990, Science.

[66]  D. Koshland,et al.  Use of a distant reporter group as evidence for a conformational change in a sensory receptor. , 1977, Proceedings of the National Academy of Sciences of the United States of America.