Colloids as model systems for problems in statistical physics.

Owing to their mesoscopic length scales, colloidal suspensions provide ideal model systems suitable for addressing many problems in the field of statistical physics. Exemplarily, we highlight the versatile nature of such systems by discussing experiments with stochastic resonance and a practical realization of a recently proposed ratchet cellular automaton.

[1]  C. Bechinger,et al.  Locked-floating-solid to locked-smectic transition in colloidal systems. , 2004, Physical review letters.

[2]  Clemens Bechinger,et al.  Stochastic resonance in colloidal systems , 2004 .

[3]  C. Lent,et al.  Clocked molecular quantum-dot cellular automata , 2003 .

[4]  D. Grier A revolution in optical manipulation , 2003, Nature.

[5]  Andrew Resnick,et al.  Use of optical tweezers for colloid science. , 2003, Journal of colloid and interface science.

[6]  Clemens Bechinger,et al.  Phase transitions of colloidal monolayers in periodic pinning arrays. , 2003, Physical review letters.

[7]  M. Hastings,et al.  Ratchet cellular automata. , 2002, Physical review letters.

[8]  Daan Frenkel,et al.  Soft condensed matter , 2002 .

[9]  Clemens Bechinger,et al.  Phase behavior of colloidal molecular crystals on triangular light lattices. , 2002, Physical review letters.

[10]  Peter Hänggi,et al.  Stochastic resonance in biology. How noise can enhance detection of weak signals and help improve biological information processing. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[11]  H. Löwen Colloidal soft matter under external control , 2001 .

[12]  Santucci,et al.  Numerical verification of bona fide stochastic resonance , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  R. Cowburn,et al.  Room temperature magnetic quantum cellular automata , 2000, Science.

[14]  Snider,et al.  Digital logic gate using quantum-Dot cellular automata , 1999, Science.

[15]  P. Leiderer,et al.  Direct measurement of depletion potentials in mixtures of colloids and nonionic polymers , 1998 .

[16]  R. Fox,et al.  QUANTIFYING STOCHASTIC RESONANCE IN BISTABLE SYSTEMS : RESPONSE VS RESIDENCE-TIME DISTRIBUTION FUNCTIONS , 1998 .

[17]  C. Lent,et al.  Realization of a Functional Cell for Quantum-Dot Cellular Automata , 1997 .

[18]  S. Block,et al.  Construction of multiple-beam optical traps with nanometer-resolution position sensing , 1996 .

[19]  D. Grier,et al.  Methods of Digital Video Microscopy for Colloidal Studies , 1996 .

[20]  Santucci,et al.  Stochastic resonance as a bona fide resonance. , 1995, Physical review letters.

[21]  Jung,et al.  Amplification of small signals via stochastic resonance. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[22]  Zhou,et al.  Escape-time distributions of a periodically modulated bistable system with noise. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[23]  P. Hänggi,et al.  Reaction-rate theory: fifty years after Kramers , 1990 .

[24]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[25]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .