<jats:p>For two integers <jats:inline-formula><jats:alternatives><jats:tex-math>$$k>0$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>k</mml:mi>
<mml:mo>></mml:mo>
<mml:mn>0</mml:mn>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> and <jats:inline-formula><jats:alternatives><jats:tex-math>$$\ell $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mi>ℓ</mml:mi>
</mml:math></jats:alternatives></jats:inline-formula>, a graph <jats:inline-formula><jats:alternatives><jats:tex-math>$$G=(V,E)$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>G</mml:mi>
<mml:mo>=</mml:mo>
<mml:mo>(</mml:mo>
<mml:mi>V</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi>E</mml:mi>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> is called <jats:inline-formula><jats:alternatives><jats:tex-math>$$(k,\ell )$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mi>k</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi>ℓ</mml:mi>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula>-tight if <jats:inline-formula><jats:alternatives><jats:tex-math>$$|E|=k|V|-\ell $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mo>|</mml:mo>
<mml:mi>E</mml:mi>
<mml:mo>|</mml:mo>
<mml:mo>=</mml:mo>
<mml:mi>k</mml:mi>
<mml:mo>|</mml:mo>
<mml:mi>V</mml:mi>
<mml:mo>|</mml:mo>
<mml:mo>-</mml:mo>
<mml:mi>ℓ</mml:mi>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> and <jats:inline-formula><jats:alternatives><jats:tex-math>$$i_G(X)\le k|X|-\ell $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:msub>
<mml:mi>i</mml:mi>
<mml:mi>G</mml:mi>
</mml:msub>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mi>X</mml:mi>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mo>≤</mml:mo>
<mml:mi>k</mml:mi>
<mml:mrow>
<mml:mo>|</mml:mo>
<mml:mi>X</mml:mi>
<mml:mo>|</mml:mo>
</mml:mrow>
<mml:mo>-</mml:mo>
<mml:mi>ℓ</mml:mi>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> for each <jats:inline-formula><jats:alternatives><jats:tex-math>$$X\subseteq V$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>X</mml:mi>
<mml:mo>⊆</mml:mo>
<mml:mi>V</mml:mi>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> for which <jats:inline-formula><jats:alternatives><jats:tex-math>$$i_G(X)\ge 1$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:msub>
<mml:mi>i</mml:mi>
<mml:mi>G</mml:mi>
</mml:msub>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mi>X</mml:mi>
<mml:mo>)</mml:mo>
</mml:mrow>
<mml:mo>≥</mml:mo>
<mml:mn>1</mml:mn>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula>, where <jats:inline-formula><jats:alternatives><jats:tex-math>$$i_G(X)$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:msub>
<mml:mi>i</mml:mi>
<mml:mi>G</mml:mi>
</mml:msub>
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mi>X</mml:mi>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> denotes the number of induced edges by <jats:italic>X</jats:italic>. <jats:italic>G</jats:italic> is called <jats:inline-formula><jats:alternatives><jats:tex-math>$$(k,\ell )$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mi>k</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi>ℓ</mml:mi>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula>-redundant if <jats:inline-formula><jats:alternatives><jats:tex-math>$$G-e$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>G</mml:mi>
<mml:mo>-</mml:mo>
<mml:mi>e</mml:mi>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> has a spanning <jats:inline-formula><jats:alternatives><jats:tex-math>$$(k,\ell )$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mi>k</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi>ℓ</mml:mi>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula>-tight subgraph for all <jats:inline-formula><jats:alternatives><jats:tex-math>$$e\in E$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>e</mml:mi>
<mml:mo>∈</mml:mo>
<mml:mi>E</mml:mi>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula>. We consider the following augmentation problem. Given a graph <jats:inline-formula><jats:alternatives><jats:tex-math>$$G=(V,E)$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>G</mml:mi>
<mml:mo>=</mml:mo>
<mml:mo>(</mml:mo>
<mml:mi>V</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi>E</mml:mi>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> that has a <jats:inline-formula><jats:alternatives><jats:tex-math>$$(k,\ell )$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mi>k</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi>ℓ</mml:mi>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula>-tight spanning subgraph, find a graph <jats:inline-formula><jats:alternatives><jats:tex-math>$$H=(V,F)$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>H</mml:mi>
<mml:mo>=</mml:mo>
<mml:mo>(</mml:mo>
<mml:mi>V</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi>F</mml:mi>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> with the minimum number of edges, such that <jats:inline-formula><jats:alternatives><jats:tex-math>$$G\cup H$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>G</mml:mi>
<mml:mo>∪</mml:mo>
<mml:mi>H</mml:mi>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> is <jats:inline-formula><jats:alternatives><jats:tex-math>$$(k,\ell )$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mi>k</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi>ℓ</mml:mi>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula>-redundant. We give a polynomial algorithm and a min-max theorem for this augmentation problem when the input is <jats:inline-formula><jats:alternatives><jats:tex-math>$$(k,\ell )$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mo>(</mml:mo>
<mml:mi>k</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi>ℓ</mml:mi>
<mml:mo>)</mml:mo>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula>-tight. For general inputs, we give a polynomial algorithm when <jats:inline-formula><jats:alternatives><jats:tex-math>$$k\ge \ell $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>k</mml:mi>
<mml:mo>≥</mml:mo>
<mm
[1]
Tibor Jordán,et al.
Algorithms for Graph Rigidity and Scene Analysis
,
2003,
ESA.
[2]
Tibor Jordán,et al.
Minimum Cost Globally Rigid Subgraphs
,
2019,
Bolyai Society Mathematical Studies.
[3]
Tibor Jordán,et al.
Generic global rigidity of body-hinge frameworks
,
2016,
J. Comb. Theory, Ser. B.
[4]
Bill Jackson,et al.
Brick partitions of graphs
,
2010,
Discret. Math..
[5]
Tibor Jordán,et al.
II – Combinatorial Rigidity: Graphs and Matroids in the Theory of Rigid Frameworks
,
2016
.
[6]
Audrey Lee-St. John,et al.
Pebble game algorithms and sparse graphs
,
2007,
Discret. Math..
[7]
H. Pollaczek-Geiringer.
Über die Gliederung ebener Fachwerke
,
1927
.
[8]
W. Whiteley.
Rigidity of Molecular Structures: Generic and Geometric Analysis
,
2002
.
[9]
Bill Jackson,et al.
Global rigidity of generic frameworks on the cylinder
,
2016,
J. Comb. Theory, Ser. B.
[10]
Alfredo García Olaverri,et al.
Augmenting the Rigidity of a Graph in R2
,
2011,
Algorithmica.
[11]
B. Anderson,et al.
Development of redundant rigidity theory for formation control
,
2009
.
[12]
G. Laman.
On graphs and rigidity of plane skeletal structures
,
1970
.
[13]
Tiong-Seng Tay,et al.
Henneberg's Method for Bar and Body Frameworks
,
1991
.
[14]
Brian D. O. Anderson,et al.
A Theory of Network Localization
,
2006,
IEEE Transactions on Mobile Computing.
[15]
Tibor Jordán,et al.
Generic global rigidity of body-bar frameworks
,
2013,
J. Comb. Theory B.
[16]
C. Nash-Williams.
Decomposition of Finite Graphs Into Forests
,
1964
.
[17]
A. Frank.
Connections in Combinatorial Optimization
,
2011
.
[18]
Carsten Lund,et al.
On the hardness of approximating minimization problems
,
1994,
JACM.
[19]
Anthony Nixon,et al.
Rigidity of Frameworks Supported on Surfaces
,
2010,
SIAM J. Discret. Math..
[20]
Robert E. Tarjan,et al.
Augmentation Problems
,
1976,
SIAM J. Comput..
[21]
B. Hendrickson,et al.
An Algorithm for Two-Dimensional Rigidity Percolation
,
1997
.
[22]
Jacobs,et al.
Generic rigidity percolation: The pebble game.
,
1995,
Physical review letters.
[23]
András Frank,et al.
Combined Connectivity Augmentation and Orientation Problems
,
2001,
IPCO.
[24]
Walter Whiteley,et al.
Some matroids from discrete applied geometry
,
1996
.
[25]
Ileana Streinu,et al.
Sparse Hypergraphs and Pebble Game Algorithms
,
2007,
Eur. J. Comb..
[26]
M. Lorea,et al.
On matroidal families
,
1979,
Discret. Math..
[27]
Zsolt Fekete,et al.
Egerváry Research Group on Combinatorial Optimization Uniquely Localizable Networks with Few Anchors
,
2022
.
[28]
Bruce Hendrickson,et al.
Conditions for Unique Graph Realizations
,
1992,
SIAM J. Comput..