INTIMATE: a Web-based movie recommender using text categorization

We present INTIMATE, a Web-based movie recommender that makes suggestions by using text categorization to learn from movie synopses. The performance of various feature representations, feature selectors, feature weighting mechanisms and classifiers is evaluated and discussed. INTIMATE was also compared with a feature-based movie recommender. The results show that the text-based approach outperforms the feature-based if the ratio of the number of user ratings to the vocabulary size is high.