Electron Density Distribution of Urea in Co-crystals with Rigid and Flexible Dicarboxylic Acids

This is the first study on electron density distribution of urea and dicarboxylic acids co-crystals. The accurate electron density of two co-crystals of urea with oxalic acid and l-malic acid molecules is discussed, on the basis of high-resolution X-ray diffraction data collected at 80(2) K, and compared with density functional theory calculations in a crystal structure as well as in the gas phase. Rigid dicarboxylic acid favors two-dimensional planar hydrogen bond networks, whereas flexible acid promotes layers with helical arrangements of those molecules. The nature of chemical bonding is investigated using topological analysis based on quantum atoms in molecules theory, Hirshfeld analysis, noncovalent interactions approach, distributed atomic polarizabilities and electrostatic potential. In a co-crystal of oxalic acid and urea, uncommon carbonyl···carbonyl interaction is observed, representing an antiparallel motif between oxalic and urea molecules, which was so far identified only between the same mol...

[1]  P. Macchi,et al.  The polarizability of organometallic bonds , 2015 .

[2]  P. Macchi,et al.  Charge density analysis for crystal engineering , 2014, Chemistry Central Journal.

[3]  P. Macchi,et al.  PolaBer: a program to calculate and visualize distributed atomic polarizabilities based on electron density partitioning , 2014 .

[4]  C. Lecomte,et al.  Relationship between Stereochemistry and Charge Density in Hydrogen Bonds with Oxygen Acceptors , 2013 .

[5]  Julia Contreras-García,et al.  Analysis of hydrogen-bond interaction potentials from the electron density: integration of noncovalent interaction regions. , 2011, The journal of physical chemistry. A.

[6]  Jean-Philip Piquemal,et al.  NCIPLOT: a program for plotting non-covalent interaction regions. , 2011, Journal of chemical theory and computation.

[7]  Christian B. Hübschle,et al.  MoleCoolQt – a molecule viewer for charge-density research , 2010, Journal of applied crystallography.

[8]  S. Velaga,et al.  1:1 and 2:1 Urea−Succinic Acid Cocrystals: Structural Diversity, Solution Chemistry, and Thermodynamic Stability , 2010 .

[9]  Ian J Bruno,et al.  Bond lengths in organic and metal-organic compounds revisited: X-H bond lengths from neutron diffraction data. , 2010, Acta crystallographica. Section B, Structural science.

[10]  Rafał Kurczab,et al.  Theoretical description of hydrogen bonding in oxalic acid dimer and trimer based on the combined extended-transition-state energy decomposition analysis and natural orbitals for chemical valence (ETS-NOCV) , 2010, Journal of molecular modeling.

[11]  Julia Contreras-García,et al.  Revealing noncovalent interactions. , 2010, Journal of the American Chemical Society.

[12]  H. Senn,et al.  Weak intra- and intermolecular interactions in a binaphthol imine: an experimental charge-density study on (+/-)-8'-benzhydrylideneamino-1,1'-binaphthyl-2-ol. , 2009, Acta crystallographica. Section B, Structural science.

[13]  Chick C. Wilson,et al.  Experimental and theoretical charge density study of polymorphic isonicotinamide-oxalic acid molecular complexes with strong O...H...N hydrogen bonds. , 2009, The journal of physical chemistry. A.

[14]  K. Woźniak,et al.  Towards the best model for H atoms in experimental charge-density refinement. , 2009, Acta crystallographica. Section A, Foundations of crystallography.

[15]  R. Raines,et al.  Nature of Amide Carbonyl−Carbonyl Interactions in Proteins , 2009, Journal of the American Chemical Society.

[16]  Keith Chadwick,et al.  The utility of a ternary phase diagram in the discovery of new co-crystal forms , 2009 .

[17]  Dylan Jayatilaka,et al.  Hirshfeld surface analysis , 2009 .

[18]  F. Diederich,et al.  Orthogonal dipolar interactions between amide carbonyl groups , 2008, Proceedings of the National Academy of Sciences.

[19]  A. Madsen,et al.  Estimated H-atom anisotropic displacement parameters: a comparison between different methods and with neutron diffraction results. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[20]  Kathrin Meindl,et al.  Foundations of residual-density analysis. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[21]  C. Macrae,et al.  Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures , 2008 .

[22]  R. Custelcean,et al.  Crystal engineering with urea and thiourea hydrogen-bonding groups. , 2008, Chemical communications.

[23]  M. Spackman,et al.  Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. , 2007, Chemical communications.

[24]  A. Madsen SHADE web server for estimation of hydrogen anisotropic displacement parameters , 2006 .

[25]  T. N. Guru Row,et al.  Intra- and intermolecular interactions in small bioactive molecules: cooperative features from experimental and theoretical charge-density analysis. , 2006, Acta crystallographica. Section B, Structural science.

[26]  Tejender S. Thakur,et al.  Five varieties of hydrogen bond in 1-formyl-3-thiosemicarbazide: an electron density study. , 2006, Acta crystallographica. Section B, Structural science.

[27]  Bartolomeo Civalleri,et al.  CRYSTAL: a computational tool for the ab initio study of the electronic properties of crystals , 2005 .

[28]  P. Coppens,et al.  Combination of the exact potential and multipole methods (EP/MM) for evaluation of intermolecular electrostatic interaction energies with pseudoatom representation of molecular electron densities , 2004 .

[29]  G. Arunmozhi,et al.  Crystal growth and characterization of a new nonlinear optical material: Urea l-Malic Acid , 2003 .

[30]  P Coppens,et al.  Density-optimized radial exponents for X-ray charge-density refinement from ab initio crystal calculations. , 2001, Acta crystallographica. Section A, Foundations of crystallography.

[31]  P. Coppens,et al.  The experimental charge-density approach in the evaluation of intermolecular interactions. Application of a new module of the XD programming package to several solids including a pentapeptide. , 2000, Acta crystallographica. Section A, Foundations of crystallography.

[32]  E. Gomes,et al.  Synthesis, crystal growth and characterisation of a new nonlinear optical material — urea L-malic acid , 2000 .

[33]  Louis J. Farrugia,et al.  WinGX suite for small-molecule single-crystal crystallography , 1999 .

[34]  Frank H. Allen,et al.  Carbonyl-carbonyl interactions can be competitive with hydrogen bonds , 1998 .

[35]  Claude Lecomte,et al.  Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities , 1998 .

[36]  R. Blessing Outlier Treatment in Data Merging , 1997 .

[37]  Meng Fanqing,et al.  Crystal and molecular structure of urea-(+) tartaric acid , 1996 .

[38]  M. Lü,et al.  Linear and nonlinear optical properties of a novel material: Urea-(DL)tartaric acid single crystal (UDLT) , 1996 .

[39]  M. C. Etter,et al.  Urea-glutaric acid (2∶1) structural aggregates as building blocks for crystal engineering , 1995 .

[40]  Uwe Koch,et al.  CHARACTERIZATION OF C-H-O HYDROGEN-BONDS ON THE BASIS OF THE CHARGE-DENSITY , 1995 .

[41]  Todd A. Keith,et al.  Properties of atoms in molecules: additivity and transferability of group polarizabilities , 1992 .

[42]  R. Helmholdt,et al.  The structure of urea–oxalic acid (2/1) determined by neutron diffraction at 100 K , 1991 .

[43]  A. Gavezzotti Packing analysis of organic crystals containing carbonyl or cyano groups , 1990 .

[44]  Kenneth B. Wiberg,et al.  Properties of atoms in molecules: Dipole moments and transferability of properties , 1987 .

[45]  S. Harkema,et al.  Structure of Urea-Oxalic Acid (1/1), CH4N 2 O.C2H204, Determined by Neutron Diffraction , 1984 .

[46]  D. E. Williams,et al.  Nonbonded potentials for azahydrocarbons: the importance of the Coulombic interaction , 1984 .

[47]  H. Flack,et al.  On enantiomorph‐polarity estimation , 1983 .

[48]  B. Thole Molecular polarizabilities calculated with a modified dipole interaction , 1981 .

[49]  S. Harkema,et al.  Structure and Thermal Expansion of Urea-Oxalic Acid (1:1) , 1979 .

[50]  Philip Coppens,et al.  Testing aspherical atom refinements on small-molecule data sets , 1978 .

[51]  J. Applequist,et al.  An atom dipole interaction model for molecular optical properties , 1977 .

[52]  A. Karipides,et al.  The crystal structure of S‐malatodiaquazinc(II) hydrate , 1976 .

[53]  J. Dunitz,et al.  Chemical reaction paths. IV. Aspects of O⋯C = O interactions in crystals , 1974 .

[54]  J. Bats,et al.  The crystal structure of urea oxalic acid (2:1) , 1972 .

[55]  R. G. Kostyanovsky,et al.  The enigma of a (±)-tartaric acid–urea cocrystal , 2009 .

[56]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[57]  Wen-tao Yu,et al.  Growth and characterization of urea-(DL) tartaric acid single crystals , 1996 .

[58]  W. Yu,et al.  GROWTH AND CHARACTERIZATION OF UREA-(D) TARTARIC ACID SINGLE CRYSTAL , 1996 .

[59]  E. Milner-White,et al.  Coulombic interactions between partially charged main-chain atoms not hydrogen-bonded to each other influence the conformations of alpha-helices and antiparallel beta-sheet. A new method for analysing the forces between hydrogen bonding groups in proteins includes all the Coulombic interactions. , 1995, Journal of molecular biology.

[60]  V. Videnova-Adrabińska Pre-designed structural building blocks of a (1:1) urea–glutaric acid co-crystal , 1995 .

[61]  Joseph Zyss,et al.  Nonlinear optics in multipolar media: theory and experiments , 1994 .

[62]  Robin Taylor,et al.  Use of crystallographic data in searching for isosteric replacements: Composite crystal-field environments of nitro and carbonyl groups† , 1990 .