Finite sample approximation results for principal component analysis: a matrix perturbation approach
暂无分享,去创建一个
[1] M. A. Girshick. On the Sampling Theory of Roots of Determinantal Equations , 1939 .
[2] D. Lawley. TESTS OF SIGNIFICANCE FOR THE LATENT ROOTS OF COVARIANCE AND CORRELATION MATRICES , 1956 .
[3] T. W. Anderson. An Introduction to Multivariate Statistical Analysis , 1959 .
[4] T. W. Anderson. ASYMPTOTIC THEORY FOR PRINCIPAL COMPONENT ANALYSIS , 1963 .
[5] Chandler Davis. The rotation of eigenvectors by a perturbation , 1963 .
[6] Tosio Kato. Perturbation theory for linear operators , 1966 .
[7] V. Marčenko,et al. DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .
[8] W. Kahan,et al. The Rotation of Eigenvectors by a Perturbation. III , 1970 .
[9] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[10] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[11] T. W. Anderson. An Introduction to Multivariate Statistical Analysis, 2nd Edition. , 1985 .
[12] C. O'Connor. An introduction to multivariate statistical analysis: 2nd edn. by T. W. Anderson. 675 pp. Wiley, New York (1984) , 1987 .
[13] G. Stewart,et al. Computing the eigenvalues and eigenvectors of symmetric arrowhead matrices , 1990 .
[14] G. Stewart. Perturbation theory for the singular value decomposition , 1990 .
[15] David E. Tyler,et al. ON WIELANDT'S INEQUALITY AND ITS APPLICATION TO THE ASYMPTOTIC DISTRIBUTION OF THE EIGENVALUES OF A RANDOM SYMMETRIC MATRIX , 1991 .
[16] J. Edward Jackson,et al. A User's Guide to Principal Components. , 1991 .
[17] Michael Biehl,et al. Statistical mechanics of unsupervised structure recognition , 1994 .
[18] J. Nadal,et al. Optimal unsupervised learning , 1994 .
[19] J. W. Silverstein,et al. Analysis of the limiting spectral distribution of large dimensional random matrices , 1995 .
[20] J. W. Silverstein,et al. On the empirical distribution of eigenvalues of a class of large dimensional random matrices , 1995 .
[21] C. R. Rao. Improved Linear Discrimination Using Time-frequency Dictionaries , 1995 .
[22] Geert Jan Bex,et al. A Gaussian scenario for unsupervised learning , 1996 .
[23] I. Johnstone. On the distribution of the largest eigenvalue in principal components analysis , 2001 .
[24] S. Szarek,et al. Chapter 8 - Local Operator Theory, Random Matrices and Banach Spaces , 2001 .
[25] Erkki Oja,et al. Independent Component Analysis , 2001 .
[26] Magnus Rattray,et al. PCA learning for sparse high-dimensional data , 2003 .
[27] S. Péché,et al. Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices , 2004, math/0403022.
[28] J. W. Silverstein,et al. Eigenvalues of large sample covariance matrices of spiked population models , 2004, math/0408165.
[29] D. B. Hibbert. Multivariate calibration and classification - T. Naes, T. Isaksson, T. Fearn and T. Davis, NIR Publications, Chichester, 2002, ISBN 0 9528666 2 5, UK @$45.00, US$75.00 , 2004 .
[30] Anja Vogler,et al. An Introduction to Multivariate Statistical Analysis , 2004 .
[31] D. Paul,et al. Asymptotics of the leading sample eigenvalues for a spiked covariance model , 2004 .
[32] Ronald R. Coifman,et al. Partial least squares, Beer's law and the net analyte signal: statistical modeling and analysis , 2005 .
[33] Ronald R. Coifman,et al. The prediction error in CLS and PLS: the importance of feature selection prior to multivariate calibration , 2005 .
[34] G. Stewart. Stochastic Perturbation Theory , 1990, SIAM Rev..
[35] Noureddine El Karoui. Tracy–Widom limit for the largest eigenvalue of a large class of complex sample covariance matrices , 2005, math/0503109.
[36] D. Paul. ASYMPTOTICS OF SAMPLE EIGENSTRUCTURE FOR A LARGE DIMENSIONAL SPIKED COVARIANCE MODEL , 2007 .
[37] J. W. Silverstein,et al. On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices , 2007 .
[38] B. Nadler,et al. Determining the number of components in a factor model from limited noisy data , 2008 .
[39] I. Johnstone,et al. Sparse Principal Components Analysis , 2009, 0901.4392.
[40] Ilse C. F. Ipsen,et al. Refined Perturbation Bounds for Eigenvalues of Hermitian and Non-Hermitian Matrices , 2009, SIAM J. Matrix Anal. Appl..
[41] Heng Tao Shen,et al. Principal Component Analysis , 2009, Encyclopedia of Biometrics.