Power Network Parameter Correction via Sparse Unsupervised Regression

The problem of correcting power network parameters and topology using multi-period SCADA measurements is considered. Starting from the current knowledge of parameter values, we formulate the parameter correction problem as a sparse unsupervised regression problem by exploiting the sparsity of the parameter errors. The advantage of the proposed approach is that it can localize and estimate parameter errors at the same time; there is no need for prior knowledge of error locations. Furthermore, the approach can be adapted to correct sparse errors in both parameters and topology simultaneously. We present an iterative parameter correction algorithm and demonstrate its efficacy using the IEEE 14-bus test case.

[1]  Stephen J. Wright,et al.  Sparse Reconstruction by Separable Approximation , 2008, IEEE Transactions on Signal Processing.

[2]  Yang Wang,et al.  Online Tracking of Transmission-Line Parameters Using SCADA Data , 2016, IEEE Transactions on Power Delivery.

[3]  Yuan Liao,et al.  Online estimation of power transmission line parameters, temperature and sag , 2011, 2011 North American Power Symposium.

[4]  Felix F. Wu,et al.  Estimation of parameter errors from measurement residuals in state estimation (power systems) , 1992 .

[5]  E. Handschin,et al.  Bad data analysis for power system state estimation , 1975, IEEE Transactions on Power Apparatus and Systems.

[6]  A. Abur,et al.  Identification of network parameter errors , 2006, IEEE Transactions on Power Systems.

[7]  Ali Abur,et al.  Robust State Estimation Against Measurement and Network Parameter Errors , 2018, IEEE Transactions on Power Systems.

[8]  Farrokh Aminifar,et al.  Parameter Estimation of Multiterminal Transmission Lines Using Joint PMU and SCADA Data , 2015, IEEE Transactions on Power Delivery.

[9]  Ali Abur,et al.  Highly Efficient Implementation for Parameter Error Identification Method Exploiting Sparsity , 2017, IEEE Transactions on Power Systems.

[10]  Atif S. Debs Parameter estimation for power systems in the steady-state , 1974, CDC 1974.

[11]  Igor Ivanov,et al.  Synchrophasor-based transmission line parameter estimation algorithm taking into account measurement errors , 2016, 2016 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe).

[12]  Milton B. Do Coutto Filho,et al.  Correcting electrical network parameters , 2009, 2009 IEEE Power & Energy Society General Meeting.

[13]  Ali Abur,et al.  Identifying Parameter Errors via Multiple Measurement Scans , 2013, IEEE Transactions on Power Systems.

[14]  Tianshu Bi,et al.  Transmission line parameters identification based on moving-window TLS and PMU data , 2011, 2011 International Conference on Advanced Power System Automation and Protection.

[15]  Elias Kyriakides,et al.  Estimation of transmission line parameters using PMU measurements , 2015, 2015 IEEE Power & Energy Society General Meeting.

[16]  Zhaosong Lu,et al.  Iterative reweighted minimization methods for $$l_p$$lp regularized unconstrained nonlinear programming , 2012, Math. Program..

[17]  C. S. Indulkar,et al.  Estimation of transmission line parameters from measurements , 2008 .

[18]  S. Mokhtari,et al.  Real time recursive parameter estimation in energy management systems , 1996 .