A comparison of two optimization methods for mesh quality improvement

We compare inexact Newton and block coordinate descent optimization methods for improving the quality of a mesh by repositioning the vertices, where the overall quality is measured by the harmonic mean of the mean-ratio metric. The effects of problem size, element size heterogeneity, and various vertex displacement schemes on the performance of these algorithms are assessed for a series of tetrahedral meshes.

[1]  Gustavo C. Buscaglia,et al.  OPTIMIZATION STRATEGIES IN UNSTRUCTURED MESH GENERATION , 1996 .

[2]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[3]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[4]  Dale A. Anderson Grid cell volume control with an adaptive grid generator , 1990 .

[5]  L. Armijo Minimization of functions having Lipschitz continuous first partial derivatives. , 1966 .

[6]  Patrick M. Knupp,et al.  Algebraic Mesh Quality Metrics , 2001, SIAM J. Sci. Comput..

[7]  Patrick M. Knupp,et al.  Matrix Norms & The Condition Number: A General Framework to Improve Mesh Quality Via Node-Movement , 1999, IMR.

[8]  José E. Castillo,et al.  A Discrete Variational Grid Generation Method , 1991, SIAM J. Sci. Comput..

[9]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[10]  V. Parthasarathy,et al.  A constrained optimization approach to finite element mesh smoothing , 1991 .

[11]  Todd S. Munson,et al.  Mesh shape-quality optimization using the inverse mean-ratio metric , 2007, Math. Program..

[12]  S. Canann,et al.  Optismoothing: an optimization-driven approach to mesh smoothing , 1993 .

[13]  Andreas Griewank,et al.  Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.

[14]  R. K. Smith,et al.  Mesh Smoothing Using A Posteriori Error Estimates , 1997 .

[15]  L. Freitag,et al.  Tetrahedral mesh improvement via optimization of the element condition number , 2002 .