Entanglement-assisted classical capacities of compound and arbitrarily varying quantum channels

We consider classical message transmission under entanglement assistance for compound memoryless and arbitrarily varying quantum channels. In both cases, we prove general coding theorems together with corresponding weak converse bounds. In this way, we obtain single-letter characterizations of the entanglement-assisted classical capacities for both channel models. Moreover, we show that the entanglement-assisted classical capacity does exhibit no strong converse property for some compound quantum channels for the average as well as the maximal error criterion. A strong converse to the entanglement-assisted classical capacities does hold for each arbitrarily varying quantum channel.

[1]  Alexander Semenovich Holevo,et al.  Quantum Systems, Channels, Information: A Mathematical Introduction , 2019 .

[2]  Philip D. Plowright,et al.  Convexity , 2019, Optimization for Chemical and Biochemical Engineering.

[3]  A. Holevo On entanglement-assisted classical capacity , 2001, quant-ph/0106075.

[4]  C. Adami,et al.  VON NEUMANN CAPACITY OF NOISY QUANTUM CHANNELS , 1996 .

[5]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[6]  Rudolf Ahlswede,et al.  Quantum Capacity under Adversarial Quantum Noise: Arbitrarily Varying Quantum Channels , 2010, ArXiv.

[7]  R. Ahlswede Certain results in coding theory for compound channels , 1967 .

[8]  Peter W. Shor,et al.  Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem , 2001, IEEE Trans. Inf. Theory.

[9]  Holger Boche,et al.  Entanglement Transmission and Generation under Channel Uncertainty: Universal Quantum Channel Coding , 2008 .

[10]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[11]  Holger Boche,et al.  Erratum to: Entanglement Transmission and Generation under Channel Uncertainty: Universal Quantum Channel Coding , 2009 .

[12]  R. Schumann Quantum Information Theory , 2000, quant-ph/0010060.

[13]  RUDOLF AHLSWEDE Arbitrarily varying channels with states sequence known to the sender , 1986, IEEE Trans. Inf. Theory.

[14]  Andreas J. Winter,et al.  Quantum Reverse Shannon Theorem , 2009, ArXiv.

[15]  Holger Boche,et al.  Arbitrarily small amounts of correlation for arbitrarily varying quantum channels , 2013, 2013 IEEE International Symposium on Information Theory.

[16]  Aram W. Harrow,et al.  A family of quantum protocols , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[17]  Andreas J. Winter,et al.  Entanglement-Assisted Capacity of Quantum Multiple-Access Channels , 2008, IEEE Transactions on Information Theory.

[18]  Holger Boche,et al.  Classical Capacities of Compound and Averaged Quantum Channels , 2007, IEEE Transactions on Information Theory.

[19]  M. Fannes,et al.  Continuity of quantum conditional information , 2003, quant-ph/0312081.

[20]  Mark M. Wilde,et al.  Multiplicativity of Completely Bounded p-Norms Implies a Strong Converse for Entanglement-Assisted Capacity , 2013, ArXiv.

[21]  Michael Walter,et al.  Entanglement-Assisted Capacities of Compound Quantum Channels , 2016, IEEE Transactions on Information Theory.

[22]  Andreas J. Winter,et al.  The Quantum Reverse Shannon Theorem and Resource Tradeoffs for Simulating Quantum Channels , 2009, IEEE Transactions on Information Theory.

[23]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[24]  M. Hayashi,et al.  Universal Coding for Classical-Quantum Channel , 2008, 0805.4092.

[25]  Imre Csiszár,et al.  Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .

[26]  Nilanjana Datta,et al.  Universal coding for transmission of private information , 2010, 1007.2629.

[27]  Holger Boche,et al.  Arbitrarily Varying and Compound Classical-Quantum Channels and a Note on Quantum Zero-Error Capacities , 2012, Information Theory, Combinatorics, and Search Theory.

[28]  J. Neumann Zur Theorie der Gesellschaftsspiele , 1928 .

[29]  Milán Mosonyi,et al.  Coding Theorems for Compound Problems via Quantum Rényi Divergences , 2015, IEEE Transactions on Information Theory.

[30]  A. Holevo Bounds for the quantity of information transmitted by a quantum communication channel , 1973 .

[31]  Andreas J. Winter,et al.  A Resource Framework for Quantum Shannon Theory , 2008, IEEE Transactions on Information Theory.

[32]  A. Isar,et al.  ABOUT QUANTUM-SYSTEMS , 2004 .

[33]  R. Renner,et al.  The Quantum Reverse Shannon Theorem Based on One-Shot Information Theory , 2009, 0912.3805.

[34]  Mark M. Wilde,et al.  Entanglement-Assisted Communication of Classical and Quantum Information , 2008, IEEE Transactions on Information Theory.

[35]  R. Ahlswede Elimination of correlation in random codes for arbitrarily varying channels , 1978 .