Entanglement-assisted classical capacities of compound and arbitrarily varying quantum channels
暂无分享,去创建一个
Holger Boche | Gisbert Janssen | Stephan Kaltenstadler | H. Boche | Gisbert Janssen | Stephan Kaltenstadler
[1] Alexander Semenovich Holevo,et al. Quantum Systems, Channels, Information: A Mathematical Introduction , 2019 .
[2] Philip D. Plowright,et al. Convexity , 2019, Optimization for Chemical and Biochemical Engineering.
[3] A. Holevo. On entanglement-assisted classical capacity , 2001, quant-ph/0106075.
[4] C. Adami,et al. VON NEUMANN CAPACITY OF NOISY QUANTUM CHANNELS , 1996 .
[5] Charles H. Bennett,et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.
[6] Rudolf Ahlswede,et al. Quantum Capacity under Adversarial Quantum Noise: Arbitrarily Varying Quantum Channels , 2010, ArXiv.
[7] R. Ahlswede. Certain results in coding theory for compound channels , 1967 .
[8] Peter W. Shor,et al. Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem , 2001, IEEE Trans. Inf. Theory.
[9] Holger Boche,et al. Entanglement Transmission and Generation under Channel Uncertainty: Universal Quantum Channel Coding , 2008 .
[10] Charles H. Bennett,et al. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.
[11] Holger Boche,et al. Erratum to: Entanglement Transmission and Generation under Channel Uncertainty: Universal Quantum Channel Coding , 2009 .
[12] R. Schumann. Quantum Information Theory , 2000, quant-ph/0010060.
[13] RUDOLF AHLSWEDE. Arbitrarily varying channels with states sequence known to the sender , 1986, IEEE Trans. Inf. Theory.
[14] Andreas J. Winter,et al. Quantum Reverse Shannon Theorem , 2009, ArXiv.
[15] Holger Boche,et al. Arbitrarily small amounts of correlation for arbitrarily varying quantum channels , 2013, 2013 IEEE International Symposium on Information Theory.
[16] Aram W. Harrow,et al. A family of quantum protocols , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..
[17] Andreas J. Winter,et al. Entanglement-Assisted Capacity of Quantum Multiple-Access Channels , 2008, IEEE Transactions on Information Theory.
[18] Holger Boche,et al. Classical Capacities of Compound and Averaged Quantum Channels , 2007, IEEE Transactions on Information Theory.
[19] M. Fannes,et al. Continuity of quantum conditional information , 2003, quant-ph/0312081.
[20] Mark M. Wilde,et al. Multiplicativity of Completely Bounded p-Norms Implies a Strong Converse for Entanglement-Assisted Capacity , 2013, ArXiv.
[21] Michael Walter,et al. Entanglement-Assisted Capacities of Compound Quantum Channels , 2016, IEEE Transactions on Information Theory.
[22] Andreas J. Winter,et al. The Quantum Reverse Shannon Theorem and Resource Tradeoffs for Simulating Quantum Channels , 2009, IEEE Transactions on Information Theory.
[23] John B. Shoven,et al. I , Edinburgh Medical and Surgical Journal.
[24] M. Hayashi,et al. Universal Coding for Classical-Quantum Channel , 2008, 0805.4092.
[25] Imre Csiszár,et al. Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .
[26] Nilanjana Datta,et al. Universal coding for transmission of private information , 2010, 1007.2629.
[27] Holger Boche,et al. Arbitrarily Varying and Compound Classical-Quantum Channels and a Note on Quantum Zero-Error Capacities , 2012, Information Theory, Combinatorics, and Search Theory.
[28] J. Neumann. Zur Theorie der Gesellschaftsspiele , 1928 .
[29] Milán Mosonyi,et al. Coding Theorems for Compound Problems via Quantum Rényi Divergences , 2015, IEEE Transactions on Information Theory.
[30] A. Holevo. Bounds for the quantity of information transmitted by a quantum communication channel , 1973 .
[31] Andreas J. Winter,et al. A Resource Framework for Quantum Shannon Theory , 2008, IEEE Transactions on Information Theory.
[32] A. Isar,et al. ABOUT QUANTUM-SYSTEMS , 2004 .
[33] R. Renner,et al. The Quantum Reverse Shannon Theorem Based on One-Shot Information Theory , 2009, 0912.3805.
[34] Mark M. Wilde,et al. Entanglement-Assisted Communication of Classical and Quantum Information , 2008, IEEE Transactions on Information Theory.
[35] R. Ahlswede. Elimination of correlation in random codes for arbitrarily varying channels , 1978 .