From Knothe's Rearrangement to Brenier's Optimal Transport Map
暂无分享,去创建一个
[1] Alessio Figalli,et al. Regularity of optimal transport maps on multiple products of spheres , 2010, 1006.1957.
[2] M. Rosenblatt. Remarks on a Multivariate Transformation , 1952 .
[3] Y. Brenier. Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .
[4] Guillaume Carlier,et al. From Knothe's Transport to Brenier's Map and a Continuation Method for Optimal Transport , 2008, SIAM J. Math. Anal..
[5] Richard S. Hamilton,et al. The inverse function theorem of Nash and Moser , 1982 .
[6] R. McCann. Polar factorization of maps on Riemannian manifolds , 2001 .
[7] D. Gilbarg,et al. Elliptic Partial Differential Equa-tions of Second Order , 1977 .
[8] G. Loeper,et al. Numerical Analysis/Partial Differential Equations Numerical solution of the Monge-Ampère equation by a Newton's algorithm , 2005 .
[9] Yann Brenier,et al. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem , 2000, Numerische Mathematik.
[10] L. Caffarelli. The regularity of mappings with a convex potential , 1992 .
[11] Steven Haker,et al. Minimizing Flows for the Monge-Kantorovich Problem , 2003, SIAM J. Math. Anal..
[12] Dario Cordero-Erausquin. Sur le transport de mesures périodiques , 1999 .
[13] H. Knothe. Contributions to the theory of convex bodies. , 1957 .
[14] A. Figalli,et al. A mass transportation approach to quantitative isoperimetric inequalities , 2010 .
[15] L. Kantorovich. On the Translocation of Masses , 2006 .