Rabinizer 3: Safraless Translation of LTL to Small Deterministic Automata

We present a tool for translating LTL formulae into deterministic ω-automata. It is the first tool that covers the whole LTL that does not use Safra’s determinization or any of its variants. This leads to smaller automata. There are several outputs of the tool: firstly, deterministic Rabin automata, which are the standard input for probabilistic model checking, e.g. for the probabilistic model-checker PRISM; secondly, deterministic generalized Rabin automata, which can also be used for probabilistic model checking and are sometimes by orders of magnitude smaller. We also link our tool to PRISM and show that this leads to a significant speed-up of probabilistic LTL model checking, especially with the generalized Rabin automata.

[1]  S. Anderson,et al.  Secure Synthesis of Code: A Process Improvement Experiment , 1999, World Congress on Formal Methods.

[2]  Nir Piterman From Nondeterministic Büchi and Streett Automata to Deterministic Parity Automata , 2007, Log. Methods Comput. Sci..

[3]  Fausto Giunchiglia,et al.  Improved Automata Generation for Linear Temporal Logic , 1999, CAV.

[4]  Dimitra Giannakopoulou,et al.  From States to Transitions: Improving Translation of LTL Formulae to Büchi Automata , 2002, FORTE.

[5]  Christel Baier,et al.  Principles of model checking , 2008 .

[6]  Allan Clark,et al.  Semantic-Based Development of Service-Oriented Systems , 2006, FORTE.

[7]  Jan Kretínský,et al.  Rabinizer: Small Deterministic Automata for LTL(F, G) , 2012, ATVA.

[8]  Amir Pnueli,et al.  Algorithmic Verification of Linear Temporal Logic Specifications , 1998, ICALP.

[9]  Amir Pnueli,et al.  On the Merits of Temporal Testers , 2008, 25 Years of Model Checking.

[10]  Borivoj Melichar,et al.  Finding Common Motifs with Gaps Using Finite Automata , 2006, CIAA.

[11]  Jan Strejcek,et al.  Effective Translation of LTL to Deterministic Rabin Automata: Beyond the (F, G)-Fragment , 2013, ATVA.

[12]  Alexandre Duret-Lutz Manipulating LTL Formulas Using Spot 1.0 , 2013, ATVA.

[13]  Fabio Somenzi,et al.  Efficient Büchi Automata from LTL Formulae , 2000, CAV.

[14]  Jan Kretínský,et al.  Deterministic Automata for the (F,G)-fragment of LTL , 2012, CAV.

[15]  S. Safra,et al.  On the complexity of omega -automata , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[16]  Kousha Etessami,et al.  Optimizing Büchi Automata , 2000, CONCUR.

[17]  Jean-Michel Couvreur,et al.  On-the-Fly Verification of Linear Temporal Logic , 1999, World Congress on Formal Methods.

[18]  Krishnendu Chatterjee,et al.  Automata with Generalized Rabin Pairs for Probabilistic Model Checking and LTL Synthesis , 2013, CAV.

[19]  Alexandre Duret-Lutz,et al.  Compositional Approach to Suspension and Other Improvements to LTL Translation , 2013, SPIN.

[20]  Yih-Kuen Tsay,et al.  GOAL for Games, Omega-Automata, and Logics , 2013, CAV.

[21]  Andreas Podelski,et al.  ACSAR: Software Model Checking with Transfinite Refinement , 2007, SPIN.

[22]  Paul Gastin,et al.  Fast LTL to Büchi Automata Translation , 2001, CAV.

[23]  Jan Kretínský,et al.  From LTL to Deterministic Automata: A Safraless Compositional Approach , 2014, CAV.

[24]  Vojtech Rehák,et al.  LTL to Büchi Automata Translation: Fast and More Deterministic , 2012, TACAS.

[25]  Sven Schewe,et al.  Tighter Bounds for the Determinisation of Büchi Automata , 2009, FoSSaCS.

[26]  Jan Strejcek,et al.  Comparison of LTL to Deterministic Rabin Automata Translators , 2013, LPAR.

[27]  Rajeev Alur,et al.  A Temporal Logic of Nested Calls and Returns , 2004, TACAS.

[28]  Ian Stark,et al.  Free-Algebra Models for the pi-Calculus , 2005, FoSSaCS.

[29]  Carsten Fritz,et al.  Constructing Büchi Automata from Linear Temporal Logic Using Simulation Relations for Alternating Büchi Automata , 2003, CIAA.

[30]  Marta Z. Kwiatkowska,et al.  PRISM 4.0: Verification of Probabilistic Real-Time Systems , 2011, CAV.

[31]  Christel Baier,et al.  On-the-Fly Stuttering in the Construction of Deterministic omega -Automata , 2007, CIAA.

[32]  Frank Wolter,et al.  Monodic fragments of first-order temporal logics: 2000-2001 A.D , 2001, LPAR.

[33]  Robert K. Brayton,et al.  Structural Complexity of Omega-Automata , 1995, STACS.

[34]  Amir Pnueli,et al.  The temporal logic of programs , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).