Recognition of aspect-dependent three-dimensional objects by an echolocating Atlantic bottlenose dolphin.

We examined the ability of a bottlenose dolphin (Tursiops truncatus) to recognize aspect-dependent objects using echolocation. An aspect-dependent object such as a cube produces acoustically different echoes at different angles relative to the echolocation signal. The dolphin recognized the objects even though the objects were free to rotate and sway. A linear discriminant analysis and nearest centroid classifier could classify the objects using average amplitude, center frequency, and bandwidth of object echoes. The results show that dolphins can use varying acoustic properties to recognize constant objects and suggest that aspect-independent representations may be formed by combining information gleaned from multiple echoes.

[1]  H. L. Roitblat,et al.  Object representation in the bottlenose dolphin (Tursiops truncatus): integration of visual and echoic information. , 1996 .

[2]  Milton H. Hodge,et al.  Some further tests of the constant-ratio rule , 1967 .

[3]  D. Helweg Recognition of aspect-dependent geometric solids by an echolocating atlantic bottlenosed dolphin , 1993 .

[4]  Patrick W. Moore,et al.  Representation and processing of acoustic information in a biomimetic neural network , 1993 .

[5]  Whitlow W. L. Au,et al.  Cylinder and Cube Shape Discrimination by an Echolocating Blindfolded Bottlenosed Dolphin , 1980 .

[6]  P W Moore,et al.  Echolocation transmitting beam of the Atlantic bottlenose dolphin. , 1986, The Journal of the Acoustical Society of America.

[7]  Robert J. Urick,et al.  Principles of underwater sound , 1975 .

[8]  H L Roitblat,et al.  Matching-to-sample by an echolocating dolphin (Tursiops truncatus). , 1990, Journal of experimental psychology. Animal behavior processes.

[9]  Frank R. Clarke,et al.  Constant‐Ratio Rule for Confusion Matrices in Speech Communication , 1957 .

[10]  R. Busnel,et al.  Animal Sonar Systems , 1980, NATO Advanced Study Institutes Series.

[11]  S. Kosslyn Image and mind , 1982 .

[12]  Herbert L. Roitblat,et al.  Natural Dolphin Echo Recognition Using an Integrator Gateway Network , 1990, NIPS.

[13]  Whitlow W. L. Au,et al.  The Sonar of Dolphins , 1993, Springer New York.

[14]  R. L. Brill,et al.  BEHAVIORAL EVIDENCE FOR HEARING THROUGH THE LOWER JAW BY AN ECHOLOCATING DOLPHIN (TURSIOPS TRUNCATUS) , 1988 .

[15]  Patrick W. Moore,et al.  Investigations on the Control of Echolocation Pulses in the Dolphin (Tursiops Truncatus) , 1990 .

[16]  R. Shepard,et al.  Mental Rotation of Three-Dimensional Objects , 1971, Science.

[17]  Whitlow W. L. Au,et al.  Sphere-Cylinder Discrimination Via Echolocation by Tursiops truncatus , 1980 .

[18]  W. Au Sonar Target Detection and Recognition by Odontocetes , 1988 .

[19]  Jeanette A. Thomas,et al.  Sensory Abilities of Cetaceans , 1990, NATO ASI Series.

[20]  Clifford Hammer,et al.  Porpoise echo‐recognition: An analysis of controlling target characteristics , 1980 .

[21]  Whitlow W. L. Au,et al.  Response Bias and Attention in Discriminative Echolocation by Tursiops truncatus , 1980 .

[22]  Alexander Ya. Supin,et al.  Marine Mammal Sensory Systems , 1992, Springer US.

[23]  Ronald J. Schusterman,et al.  COMPARATIVE COGNITION IN MARINE MAMMALS: A CLARIFICATION ON MATCH‐TO‐SAMPLE TESTS , 1992 .

[24]  P. Nachtigall,et al.  Sensory Systems of Aquatic Mammals , 1995 .

[25]  Herbert L. Roitblat,et al.  Recognizing successive dolphin echoes with an integrator gateway network , 1991, Neural Networks.

[26]  Neil A. Macmillan,et al.  Detection Theory: A User's Guide , 1991 .

[27]  H. L. Roitblat,et al.  Dolphin echolocation: identification of returning echoes using a counterpropagation network , 1989, International 1989 Joint Conference on Neural Networks.

[28]  M. H. Hodge,et al.  Confusion matrix analysis of single and multidimensional auditory displays. , 1962, Journal of experimental psychology.

[29]  B. Tabachnick,et al.  Using Multivariate Statistics , 1983 .

[30]  Herbert L. Roitblat,et al.  NEURAL NETWORK MODELING OF A DOLPHIN'S SONAR DISCRIMINATION CAPABILITIES , 1994 .

[31]  Paul E. Nachtigall,et al.  Odontocete Echolocation Performance on Object Size, Shape and Material , 1980 .

[32]  R. Duncan Luce,et al.  Individual Choice Behavior , 1959 .

[33]  Werner G Neubauer Acoustic Reflection from Surfaces and Shapes , 1986 .

[34]  L M Herman,et al.  Sensory integration in the bottlenosed dolphin: immediate recognition of complex shapes across the senses of echolocation and vision. , 1995, The Journal of the Acoustical Society of America.

[35]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[36]  Eugene Galanter,et al.  Handbook of mathematical psychology: I. , 1963 .

[37]  Whitlow W. L. Au,et al.  Material composition discrimination of cylinders at different aspect angles by an echolocating Dolphin , 1991 .

[38]  Philip D. Wasserman,et al.  Neural computing - theory and practice , 1989 .

[39]  P W Moore,et al.  Detection of complex echoes in noise by an echolocating dolphin. , 1988, The Journal of the Acoustical Society of America.

[40]  W. Sullivan,et al.  Animal Sonar: Processes and Performance , 1990 .