Models of Quantum Algorithms in Sets and Relations

We construct abstract models of blackbox quantum algorithms using a model of quantum computation in sets and relations, a setting that is usually considered for nondeterministic classical computation. This alternative model of quantum computation (QCRel), though unphysical, nevertheless faithfully models its computational structure. Our main results are models of the Deutsch-Jozsa, single-shot Grovers, and GroupHomID algorithms in QCRel. These results provide new tools to analyze the semantics of quantum computation and improve our understanding of the relationship between computational speedups and the structure of physical theories. They also exemplify a method of extending physical/computational intuition into new mathematical settings.

[1]  Prakash Panangaden,et al.  Classifying all mutually unbiased bases in Rel , 2009, 0909.4453.

[2]  Aleks Kissinger,et al.  Strong Complementarity and Non-locality in Categorical Quantum Mechanics , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.

[3]  R. Spekkens Evidence for the epistemic view of quantum states: A toy theory , 2004, quant-ph/0401052.

[4]  Dov M. Gabbay,et al.  Handbook of Quantum logic and Quantum Structures , 2007 .

[5]  Vladimir Zamdzhiev,et al.  An Abstract Approach towards Quantum Secret Sharing , 2012 .

[6]  P. Selinger A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.

[7]  Benjamin Schumacher,et al.  Modal Quantum Theory , 2010, 1204.0701.

[8]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[9]  D. Ellerman On classical finite probability theory as a quantum probability calculus , 2015, 1502.01048.

[10]  Bob Coecke,et al.  Interacting quantum observables: categorical algebra and diagrammatics , 2009, ArXiv.

[11]  Dusko Pavlovic,et al.  Quantum and Classical Structures in Nondeterminstic Computation , 2008, QI.

[12]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[13]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[14]  B. Coecke,et al.  Categories for the practising physicist , 2009, 0905.3010.

[15]  Aleks Kissinger,et al.  Picturing Quantum Processes , 2017 .

[16]  Amr Sabry,et al.  Discrete quantum theories , 2013, 1305.3292.

[17]  Samson Abramsky,et al.  Operational theories and Categorical quantum mechanics , 2012, 1206.0921.

[18]  W. Zeng,et al.  Fourier transforms from strongly complementary observables , 2015, 1501.04995.

[19]  Samson Abramsky,et al.  Categorical quantum mechanics , 2008, 0808.1023.

[20]  Jamie Vicary,et al.  Abstract structure of unitary oracles for quantum algorithms , 2014, QPL.

[21]  Dusko Pavlovic,et al.  A new description of orthogonal bases , 2008, Mathematical Structures in Computer Science.

[22]  B. Coecke,et al.  Classical and quantum structuralism , 2009, 0904.1997.

[23]  Amr Sabry,et al.  Quantum Computing over Finite Fields , 2011, 1101.3764.

[24]  Chris Heunen,et al.  Relative Frobenius algebras are groupoids , 2011, 1112.1284.

[25]  Jamie Vicary Topological Structure of Quantum Algorithms , 2013, 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science.