Extremal sizes of subspace partitions

A subspace partition Π of V = V(n, q) is a collection of subspaces of V such that each 1-dimensional subspace of V is in exactly one subspace of Π. The size of Π is the number of its subspaces. Let σq(n, t) denote the minimum size of a subspace partition of V in which the largest subspace has dimension t, and let ρq(n, t) denote the maximum size of a subspace partition of V in which the smallest subspace has dimension t. In this article, we determine the values of σq(n, t) and ρq(n, t) for all positive integers n and t. Furthermore, we prove that if n ≥ 2t, then the minimum size of a maximal partial t-spread in V(n + t −1, q) is σq(n, t).

[1]  András Gács,et al.  On Maximal Partial Spreads in PG(n, q) , 2003, Des. Codes Cryptogr..

[2]  Dieter Jungnickel,et al.  A note on maximal partial spreads with deficiency q+1, q even , 2003, J. Comb. Theory, Ser. A.

[3]  J. Schönheim,et al.  Group Partition, Factorization and the Vector Covering Problem , 1972, Canadian Mathematical Bulletin.

[4]  A. Dean,et al.  EXISTENCE AND CONSTRUCTION OF RANDOMIZATION DEFINING CONTRAST SUBSPACES FOR REGULAR FACTORIAL DESIGNS , 2009, 0909.0443.

[5]  Heather Jordon,et al.  The maximum size of a partial 3-spread in a finite vector space over GF(2) , 2010, Des. Codes Cryptogr..

[6]  Charles Vanden Eynden,et al.  On vector space partitions and uniformly resolvable designs , 2008, Des. Codes Cryptogr..

[7]  A. Beutelspacher Blocking sets and partial spreads in finite projective spaces , 1980 .

[8]  Charles J. Colbourn,et al.  Orthogonal Arrays of Index More Than One , 2006 .

[9]  Kenneth B. Huber Department of Mathematics , 1894 .

[10]  Olof Heden,et al.  Some necessary conditions for vector space partitions , 2011, Discret. Math..

[11]  Tor Bu Partitions of a vector space , 1980, Discret. Math..

[12]  Andries E. Brouwer,et al.  Blocking sets in $PG(2,p)$ for small $p$, and partial spreads in $PG(3,7)$ , 2003 .

[13]  Olof Heden,et al.  A Maximal Partial Spread of Size 45 in PG(3,7) , 2001, Des. Codes Cryptogr..

[14]  Olof Heden Partitions of Finite Abelian Groups , 1986, Eur. J. Comb..

[15]  P. Sissokho,et al.  The minimum size of a finite subspace partition , 2011 .

[16]  Leo Storme,et al.  On the Spectrum of the Sizes of Maximal Partial Line Spreads in PG(2n,q), n ≥ 3 , 2005, Des. Codes Cryptogr..

[17]  Olof Heden On the length of the tail of a vector space partition , 2009, Discret. Math..

[18]  Albrecht Beutelspacher,et al.  Partial spreads in finite projective spaces and partial designs , 1975 .

[19]  Olof Heden,et al.  Partitions of the 8‐dimensional vector space over GF(2) , 2010 .

[20]  Se June Hong,et al.  A General Class of Maximal Codes ror Computer Applications , 1972, IEEE Transactions on Computers.

[21]  David A. Drake,et al.  Partial t-spreads and group constructible (s,r,μ)-nets , 1979 .

[22]  A. G. Spera On Partitions of Finite vector Spaces , 2009, 0902.3075.

[23]  Paul Ernest,et al.  The mathematics department , 1988 .