Efficient distributed mesh data structure for parallel automated adaptive analysis

For the purpose of efficiently supporting parallel mesh-based simulations, we developed a partition model and a distributed mesh data management system that is able to shape its mesh data structure dynamically based on the user’s representational needs to provide the needed representation at a minimum cost (memory and time), called Flexible distributed Mesh DataBase (FMDB). The purpose of the partition model is to represent mesh partitioning and support mesh-level parallel operations through inter-processor communication links. FMDB has been used to efficiently support parallel automated adaptive analysis processes in conjunction with existing analysis engines.

[1]  B. G. Larwood,et al.  Domain decomposition approach for parallel unstructured mesh generation , 2003 .

[2]  H. M. Deitel,et al.  C++: how to program (2nd ed.) , 1998 .

[3]  Jean-François Remacle,et al.  Parallel Algorithm Oriented Mesh Database , 2002, Engineering with Computers.

[4]  Michael J. Vilot,et al.  Standard template library , 1996 .

[5]  Scott B. Baden,et al.  Parallel Software Abstractions for Structured Adaptive Mesh Methods , 2001, J. Parallel Distributed Comput..

[6]  W. P. Salman,et al.  How to Program , 1983 .

[7]  Nigel P. Weatherill,et al.  Distributed parallel Delaunay mesh generation , 1999 .

[8]  Peter S. Pacheco Parallel programming with MPI , 1996 .

[9]  L Lämmer,et al.  Parallel generation of triangular and quadrilateral meshes , 2000 .

[10]  Michael L. Scott,et al.  Programming Language Pragmatics , 1999 .

[11]  Ralph Johnson,et al.  design patterns elements of reusable object oriented software , 2019 .

[12]  M. S. Shephard,et al.  Parallel three-dimensional mesh generation on distributed memory MIMD computers , 2005, Engineering with Computers.

[13]  Michael Strayer SciDAC: Scientific Discovery through Advanced Computing , 2005 .

[14]  Oh Joon Kwon,et al.  A parallel unstructured dynamic mesh adaptation algorithm for 3‐D unsteady flows , 2005 .

[15]  R. Biswas,et al.  A new procedure for dynamic adaption of three-dimensional unstructured grids , 1994 .

[16]  Bharat K. Soni,et al.  Handbook of Grid Generation , 1998 .

[17]  David R. Musser,et al.  Fmdb: flexible distributed mesh database for parallel automated adaptive analysis , 2005 .

[18]  Andrei Alexandrescu,et al.  Modern C++ design: generic programming and design patterns applied , 2001 .

[19]  Hugues de Cougny,et al.  Parallel Unstructured Grid Generation , 1998 .

[20]  Barry Hilary Valentine Topping,et al.  Parallel and distributed adaptive quadrilateral mesh generation , 1999 .

[21]  Paul J. Deitel,et al.  C how to program , 1994 .

[22]  Ralf Diekmann,et al.  Shape-optimized mesh partitioning and load balancing for parallel adaptive FEM , 2000, Parallel Comput..

[23]  Joseph E. Flaherty,et al.  Parallel adaptive mesh refinement and redistribution on distributed memory computers , 1994 .

[24]  Dinshaw S. Balsara,et al.  Highly parallel structured adaptive mesh refinement using parallel language-based approaches , 2001, Parallel Comput..

[25]  David Vandevoorde,et al.  C++ Templates , 2002 .

[26]  Mark S. Shephard,et al.  Parallel refinement and coarsening of tetrahedral meshes , 1999 .

[27]  Martin Berzins,et al.  Parallel unstructured tetrahedral mesh adaptation: Algorithms, implementation and scalability , 1999 .

[28]  Glaucio H. Paulino,et al.  A compact adjacency‐based topological data structure for finite element mesh representation , 2005 .

[29]  Mark S. Shephard Meshing environment for geometry-based analysis , 2000 .

[30]  Chris Walshaw,et al.  Parallel optimisation algorithms for multilevel mesh partitioning , 2000, Parallel Comput..

[31]  J. Z. Zhu,et al.  The finite element method , 1977 .

[32]  Jean-François Remacle,et al.  An algorithm oriented mesh database , 2003, IMR.

[33]  Frédéric Alauzet,et al.  Parallel anisotropic 3D mesh adaptation by mesh modification , 2006, Engineering with Computers.

[34]  Mark W. Beall,et al.  An Object-Oriented Framework for the Reliable Automated Solution of Problems in Mathematical Physics , 1999 .

[35]  Mark S. Shephard,et al.  3D anisotropic mesh adaptation by mesh modification , 2005 .

[36]  Clifford Stein,et al.  Introduction to algorithms. Chapter 16. 2nd Edition , 2001 .

[37]  Mark S. Shephard,et al.  Accounting for curved domains in mesh adaptation , 2003 .

[38]  Martti Mäntylä,et al.  Introduction to Solid Modeling , 1988 .

[39]  L Ge Adaptive Mesh Refinement for High Accuracy Wall Loss Determination in Accelerating Cavity Design , 2004 .

[40]  Clifford Stein,et al.  Introduction to Algorithms, 2nd edition. , 2001 .

[41]  Joseph E. Flaherty,et al.  A hierarchical partition model for adaptive finite element computation , 2000 .

[42]  Michael Wolf,et al.  Solving large sparse linear systems in end-to-end accelerator structure simulations , 2004, 18th International Parallel and Distributed Processing Symposium, 2004. Proceedings..

[43]  Leonid Oliker,et al.  Parallel tetrahedral mesh adaptation with dynamic load balancing , 2013, Parallel Comput..

[44]  Mark S. Shephard,et al.  a General Topology-Based Mesh Data Structure , 1997 .

[45]  Jian Chen,et al.  ParaPART: Parallel Mesh Partitioning Tool for Distributed Systems , 2000, Concurr. Pract. Exp..

[46]  M. Shephard,et al.  Load balancing for the parallel adaptive solution of partial differential equations , 1994 .

[47]  Rao V. Garimella,et al.  Mesh data structure selection for mesh generation and FEA applications , 2002 .

[48]  Can C. Özturan,et al.  Parallel Automatic Adaptive Analysis , 1997, Parallel Comput..

[49]  George Karypis,et al.  Parmetis parallel graph partitioning and sparse matrix ordering library , 1997 .