Derivation of cable parameters for a reduced model that retains asymmetric voltage attenuation of reconstructed spinal motor neuron dendrites

Spinal motor neurons have voltage gated ion channels localized in their dendrites that generate plateau potentials. The physical separation of ion channels for spiking from plateau generating channels can result in nonlinear bistable firing patterns. The physical separation and geometry of the dendrites results in asymmetric coupling between dendrites and soma that has not been addressed in reduced models of nonlinear phenomena in motor neurons. We measured voltage attenuation properties of six anatomically reconstructed and type-identified cat spinal motor neurons to characterize asymmetric coupling between the dendrites and soma. We showed that the voltage attenuation at any distance from the soma was direction-dependent and could be described as a function of the input resistance at the soma. An analytical solution for the lumped cable parameters in a two-compartment model was derived based on this finding. This is the first two-compartment modeling approach that directly derived lumped cable parameters from the geometrical and passive electrical properties of anatomically reconstructed neurons.

[1]  Sherif M. Elbasiouny,et al.  Simulation of dendritic CaV1.3 channels in cat lumbar motoneurons: spatial distribution. , 2005, Journal of neurophysiology.

[2]  J C Pearson,et al.  Distribution of 5‐hydroxytryptamine‐immunoreactive boutons on α‐motoneurons in the lumbar spinal cord of adult cats , 1998, The Journal of comparative neurology.

[3]  Robert H. Lee,et al.  The role of voltage-sensitive dendritic conductances in generating bistable firing patterns in motoneurons , 1999, Journal of Physiology-Paris.

[4]  H. Bras,et al.  Electrotonic Clusters in the Dendritic Arborization of Abducens Motoneurons of the Rat , 1994, The European journal of neuroscience.

[5]  Michael L. Hines,et al.  The NEURON Book , 2006 .

[6]  H. Lüscher,et al.  Passive electrical properties of ventral horn neurons in rat spinal cord slices. , 1998, Journal of neurophysiology.

[7]  R. Brownstone,et al.  Characterization of calcium currents in functionally mature mouse spinal motoneurons , 2000, The European journal of neuroscience.

[8]  Kelvin E. Jones,et al.  Simulation techniques for localising and identifying the kinetics of calcium channels in dendritic neurones , 2000, Neurocomputing.

[9]  Ronald J. MacGregor,et al.  Neural and brain modeling , 1987 .

[10]  T. Sejnowski,et al.  [Letters to nature] , 1996, Nature.

[11]  T. Bui,et al.  Computational estimation of the distribution of L-type Ca(2+) channels in motoneurons based on variable threshold of activation of persistent inward currents. , 2006, Journal of neurophysiology.

[12]  W. Cameron,et al.  Morphometric analysis of phrenic motoneurons in the cat during postnatal development , 1991, The Journal of comparative neurology.

[13]  J. Rinzel,et al.  Compartmental model of vertebrate motoneurons for Ca2+-dependent spiking and plateau potentials under pharmacological treatment. , 1997, Journal of neurophysiology.

[14]  N T Carnevale,et al.  Electrophysiological characterization of remote chemical synapses. , 1982, Journal of neurophysiology.

[15]  C. Heckman,et al.  Enhancement of bistability in spinal motoneurons in vivo by the noradrenergic alpha1 agonist methoxamine. , 1999, Journal of neurophysiology.

[16]  J. Hounsgaard,et al.  Intrinsic membrane properties causing a bistable behaviour of α-motoneurones , 2004, Experimental Brain Research.

[17]  J. Eccles,et al.  The electrical properties of the motoneurone membrane , 1955, The Journal of physiology.

[18]  J. Munson,et al.  Membrane electrical properties and prediction of motor-unit type of medial gastrocnemius motoneurons in the cat. , 1985, Journal of neurophysiology.

[19]  Robert M. Brownstone,et al.  Hyperexcitable dendrites in motoneurons and their neuromodulatory control during motor behavior , 2003, Trends in Neurosciences.

[20]  I Segev,et al.  Computer simulation of group Ia EPSPs using morphologically realistic models of cat alpha-motoneurons. , 1990, Journal of neurophysiology.

[21]  Simon J. Mitchell,et al.  Direct measurement of somatic voltage clamp errors in central neurons , 2008, Nature Neuroscience.

[22]  J. Jack,et al.  Electric current flow in excitable cells , 1975 .

[23]  Y Yarom,et al.  Voltage behavior along the irregular dendritic structure of morphologically and physiologically characterized vagal motoneurons in the guinea pig. , 1990, Journal of neurophysiology.

[24]  M. Fuortes,et al.  Potentials recorded from the spinal cord with microelectrodes , 1955, The Journal of physiology.

[25]  P. K. Rose,et al.  Relationship between morphoelectrotonic properties of motoneuron dendrites and their trajectory , 2004, The Journal of comparative neurology.

[26]  Sergiy Yakovenko,et al.  Spatiotemporal activation of lumbosacral motoneurons in the locomotor step cycle. , 2002, Journal of neurophysiology.

[27]  C. Heckman,et al.  Bistability in spinal motoneurons in vivo: systematic variations in rhythmic firing patterns. , 1998, Journal of neurophysiology.

[28]  C. Koch,et al.  Methods in Neuronal Modeling: From Ions to Networks , 1998 .

[29]  M. Gorassini,et al.  Persistent inward currents in motoneuron dendrites: Implications for motor output , 2005, Muscle & nerve.

[30]  H Hultborn,et al.  Intrinsic membrane properties causing a bistable behaviour of alpha-motoneurones. , 1984, Experimental brain research.

[31]  R. E. Burke,et al.  Three‐Dimensional architecture of dendritic trees in type‐identified α‐motoneurons , 1987 .

[32]  C. Heckman,et al.  Influence of voltage-sensitive dendritic conductances on bistable firing and effective synaptic current in cat spinal motoneurons in vivo. , 1996, Journal of neurophysiology.

[33]  W. Rall Time constants and electrotonic length of membrane cylinders and neurons. , 1969, Biophysical journal.

[34]  S Cullheim,et al.  Three-dimensional architecture of dendritic trees in type-identified alpha-motoneurons. , 1987, The Journal of comparative neurology.

[35]  L M Jordan,et al.  Dendritic L‐type calcium currents in mouse spinal motoneurons: implications for bistability , 2000, The European journal of neuroscience.

[36]  Tuan V Bui,et al.  Estimates of the location of L-type Ca2+ channels in motoneurons of different sizes: a computational study. , 2007, Journal of neurophysiology.

[37]  C. Heckman,et al.  Synaptic integration in bistable motoneurons. , 1999, Progress in brain research.

[38]  J Rinzel,et al.  Transient response in a dendritic neuron model for current injected at one branch. , 1974, Biophysical journal.

[39]  John Rinzel,et al.  A minimal, compartmental model for a dendritic origin of bistability of motoneuron firing patterns , 1995, Journal of Computational Neuroscience.

[40]  W Rall,et al.  Electrotonic length estimates in neurons with dendritic tapering or somatic shunt. , 1992, Journal of neurophysiology.

[41]  C. Heckman,et al.  Bistability in spinal motoneurons in vivo: systematic variations in persistent inward currents. , 1998, Journal of neurophysiology.

[42]  John Rinzel,et al.  Intrinsic and network rhythmogenesis in a reduced traub model for CA3 neurons , 1995, Journal of Computational Neuroscience.

[43]  G. Ermentrout,et al.  Analysis of neural excitability and oscillations , 1989 .

[44]  Stefano Tarantola,et al.  Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models , 2004 .

[45]  Voltage attenuation in reconstructed type-identified motor neurons as a constraint for reduced models , 2008, BMC Neuroscience.

[46]  J J Jack,et al.  Solutions for transients in arbitrarily branching cables: I. Voltage recording with a somatic shunt. , 1993, Biophysical journal.

[47]  H. Bras,et al.  Stochastic Geometry and Electrotonic Architecture of Dendritic Arborization of Brain Stem Motoneuron , 1993, The European journal of neuroscience.

[48]  Idan Segev,et al.  The theoretical foundation of dendritic function: Selected papers of Wilfrid Rall with commentaries , 1994 .

[49]  J. Schoenen Dendritic organization of the human spinal cord: The motoneurons , 1982, The Journal of comparative neurology.

[50]  C. J. Heckman,et al.  Measuring dendritic distribution of membrane proteins , 2006, Journal of Neuroscience Methods.

[51]  J J Jack,et al.  Solutions for transients in arbitrarily branching cables: II. Voltage clamp theory. , 1993, Biophysical journal.

[52]  R. Burke,et al.  Membrane area and dendritic structure in type‐identified triceps surae alpha motoneurons , 1987, The Journal of comparative neurology.

[53]  W. Rall Branching dendritic trees and motoneuron membrane resistivity. , 1959, Experimental neurology.

[54]  J Rinzel,et al.  Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. , 1973, Biophysical journal.

[55]  I Segev,et al.  Electrotonic architecture of type-identified alpha-motoneurons in the cat spinal cord. , 1988, Journal of neurophysiology.

[56]  W. Rall Membrane time constant of motoneurons. , 1957, Science.

[57]  G. Ascoli Mobilizing the base of neuroscience data: the case of neuronal morphologies , 2006, Nature Reviews Neuroscience.

[58]  D. Levine,et al.  Physiological types and histochemical profiles in motor units of the cat gastrocnemius , 1973, The Journal of physiology.