Synthetic beta cells for fusion-mediated dynamic insulin secretion.

Generating artificial pancreatic beta cells by using synthetic materials to mimic glucose-responsive insulin secretion in a robust manner holds promise for improving clinical outcomes in people with diabetes. Here, we describe the construction of artificial beta cells (AβCs) with a multicompartmental 'vesicles-in-vesicle' superstructure equipped with a glucose-metabolism system and membrane-fusion machinery. Through a sequential cascade of glucose uptake, enzymatic oxidation and proton efflux, the AβCs can effectively distinguish between high and normal glucose levels. Under hyperglycemic conditions, high glucose uptake and oxidation generate a low pH (<5.6), which then induces steric deshielding of peptides tethered to the insulin-loaded inner small liposomal vesicles. The peptides on the small vesicles then form coiled coils with the complementary peptides anchored on the inner surfaces of large vesicles, thus bringing the membranes of the inner and outer vesicles together and triggering their fusion and insulin 'exocytosis'.

[1]  Xiaogang Qu,et al.  Carboxyl-modified single-walled carbon nanotubes selectively induce human telomeric i-motif formation , 2006, Proceedings of the National Academy of Sciences.

[2]  Joseph A. Zasadzinski,et al.  Nanocompartments Enclosing Vesicles, Colloids, and Macromolecules via Interdigitated Lipid Bilayers , 2002 .

[3]  C. Seidel,et al.  Determinants of liposome fusion mediated by synaptic SNARE proteins. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Michael S Strano,et al.  Glucose-responsive insulin by molecular and physical design , 2017, Nature Chemistry.

[5]  Kyunghoon Kim,et al.  Ultrafast proton transport in sub-1-nm diameter carbon nanotube porins. , 2016, Nature nanotechnology.

[6]  R. Schekman,et al.  Distinct sets of SEC genes govern transport vesicle formation and fusion early in the secretory pathway , 1990, Cell.

[7]  S. Boxer,et al.  Effects of linker sequences on vesicle fusion mediated by lipid-anchored DNA oligonucleotides , 2009, Proceedings of the National Academy of Sciences.

[8]  P. Ahl,et al.  Interdigitation-fusion: a new method for producing lipid vesicles of high internal volume. , 1994, Biochimica et biophysica acta.

[9]  Hana Robson Marsden,et al.  A reduced SNARE model for membrane fusion. , 2009, Angewandte Chemie.

[10]  P. C. Hinkle,et al.  Reconstitution of D-glucose transport catalyzed by a protein fraction from human erythrocytes in sonicated liposomes. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[11]  E. Araki,et al.  Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. , 1995, Diabetes research and clinical practice.

[12]  C. Chern,et al.  Polymer vesicles containing small vesicles within interior aqueous compartments and pH-responsive transmembrane channels. , 2008, Angewandte Chemie.

[13]  A. Kros,et al.  Influence of pegylation on peptide-mediated liposome fusion , 2011 .

[14]  B. Zinman,et al.  Association between 7 years of intensive treatment of type 1 diabetes and long-term mortality. , 2015, JAMA.

[15]  S. Efrat Making sense of glucose sensing , 1997, Nature Genetics.

[16]  J. Fendler,et al.  Pyranine as a sensitive pH probe for liposome interiors and surfaces. pH gradients across phospholipid vesicles. , 1978, Biochimica et biophysica acta.

[17]  J. Stelling,et al.  β-cell–mimetic designer cells provide closed-loop glycemic control , 2016, Science.

[18]  J. N. Fisher,et al.  Hyperglycemic Crises in Adult Patients With Diabetes , 2009, Diabetes Care.

[19]  J. Zasadzinski,et al.  Design and In Situ Characterization of Lipid Containers with Enhanced Drug Retention , 2011, Advanced materials.

[20]  A. De Vita,et al.  Biomimetic proteolipid vesicles for targeting inflamed tissues , 2016, Nature materials.

[21]  D. Bong,et al.  Functional determinants of a synthetic vesicle fusion system. , 2008, Journal of the American Chemical Society.

[22]  Zhen Gu,et al.  Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery , 2015, Proceedings of the National Academy of Sciences.

[23]  Ali Khademhosseini,et al.  Make better, safer biomaterials , 2016, Nature.

[24]  Maïté Marguet,et al.  Polymersomes in polymersomes: multiple loading and permeability control. , 2012, Angewandte Chemie.

[25]  Zhen Gu,et al.  Emerging micro- and nanotechnology based synthetic approaches for insulin delivery. , 2014, Chemical Society reviews.

[26]  Zhanxiang Wang,et al.  Mechanisms of biphasic insulin-granule exocytosis – roles of the cytoskeleton, small GTPases and SNARE proteins , 2009, Journal of Cell Science.

[27]  D. Nathan,et al.  The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study at 30 Years: Overview , 2013, Diabetes Care.

[28]  J. Zasadzinski,et al.  Multiple lipid compartments slow vesicle contents release in lipases and serum. , 2007, ACS nano.

[29]  X. Qu,et al.  Proton-fueled DNA-duplex-based stimuli-responsive reversible assembly of single-walled carbon nanotubes. , 2011, Chemistry.

[30]  T. Südhof,et al.  Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin , 1993, Nature.

[31]  Zhen Gu,et al.  Enhanced anticancer efficacy by ATP-mediated liposomal drug delivery. , 2014, Angewandte Chemie.

[32]  A. Kros,et al.  Model systems for membrane fusion. , 2011, Chemical Society reviews.

[33]  Maïté Marguet,et al.  Cascade reactions in multicompartmentalized polymersomes. , 2014, Angewandte Chemie.

[34]  R. Jahn,et al.  Transmembrane domain peptide/peptide nucleic acid hybrid as a model of a SNARE protein in vesicle fusion. , 2011, Angewandte Chemie.

[35]  Paul Tempst,et al.  SNAP receptors implicated in vesicle targeting and fusion , 1993, Nature.

[36]  Oscar Ces,et al.  Vesicle-based artificial cells as chemical microreactors with spatially segregated reaction pathways , 2014, Nature Communications.

[37]  S. Genuth,et al.  The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. , 1993, The New England journal of medicine.

[38]  M. Tate,et al.  Curvature dependent induction of the interdigitated gel phase in DPPC vesicles. , 1993, Biochimica et biophysica acta.

[39]  Patrik Rorsman,et al.  Regulation of insulin secretion in human pancreatic islets. , 2013, Annual review of physiology.

[40]  A. Kros,et al.  Temporal Control of Membrane Fusion through Photolabile PEGylation of Liposome Membranes. , 2016, Angewandte Chemie.

[41]  D. Bartel,et al.  Synthesizing life : Paths to unforeseeable science & technology , 2001 .

[42]  G. van den Bogaart,et al.  SNARE derived peptide mimic inducing membrane fusion. , 2011, Chemical communications.

[43]  O. Shirai,et al.  A liposome-based energy conversion system for accelerating the multi-enzyme reactions. , 2010, Physical chemistry chemical physics : PCCP.

[44]  Zhen Gu,et al.  Engineered Nanoplatelets for Enhanced Treatment of Multiple Myeloma and Thrombus , 2016, Advanced materials.

[45]  Alexander Alexeev,et al.  Ultrasoft microgels displaying emergent, platelet-like, behaviors , 2014, Nature materials.

[46]  Ronnie H. Fang,et al.  Nanoparticle-detained toxins for safe and effective vaccination , 2013, Nature nanotechnology.

[47]  Benjamin C. Tang,et al.  Managing diabetes with nanomedicine: challenges and opportunities , 2014, Nature Reviews Drug Discovery.

[48]  D. Nathan,et al.  Long-term complications of diabetes mellitus. , 1993, The New England journal of medicine.

[49]  Wolfgang Jahnke,et al.  Molecular basis of coiled-coil formation , 2007, Proceedings of the National Academy of Sciences.

[50]  Ying Zhang,et al.  Artificial cells: building bioinspired systems using small-scale biology. , 2008, Trends in biotechnology.

[51]  Ronnie H. Fang,et al.  Nanoparticle biointerfacing via platelet membrane cloaking , 2015, Nature.

[52]  Tatsuya Kin,et al.  A prevascularized subcutaneous device-less site for islet and cellular transplantation , 2015, Nature Biotechnology.

[53]  Matthew A. Bochenek,et al.  Long term Glycemic Control Using Polymer Encapsulated, Human Stem-Cell Derived β-cells in Immune Competent mice , 2016, Nature Medicine.