Attaining m s−1 level intrinsic Doppler precision with RHEA, a low-cost single-mode spectrograph

We present RHEA, a compact and inexpensive single-mode spectrograph which is built to exploit the capabilities of modest-sized telescopes in an economic way. The instrument is fed by up to seven optical waveguides with the aim of achieving an efficient and modal-noise-free unit, suitable for attaining extreme Doppler precision. The cross-dispersed layout features a wavelength coverage from 430–650 nm, with spectral resolution of R ∼75,000. When coupled to small telescopes using fast tip/tilt control, our instrument is well-suited to sensitive spectroscopy. Example science cases are accurate radial velocity studies of low to intermediate-mass giant stars with the purpose of searching for giant plants and using asteroseismology to simultaneously measure the host star parameters. In this paper we describe the final instrument design and present first results from testing the internal stability.

[1]  Stuart I. Barnes,et al.  Miniature Exoplanet Radial Velocity Array I: design, commissioning, and early photometric results , 2014, 1411.3724.

[2]  Michel Mayor,et al.  ELODIE: A spectrograph for accurate radial velocity measurements , 1996 .

[3]  J. De Ridder,et al.  TESTING SCALING RELATIONS FOR SOLAR-LIKE OSCILLATIONS FROM THE MAIN SEQUENCE TO RED GIANTS USING KEPLER DATA , 2011, 1109.3460.

[4]  F. Bouchy,et al.  Fundamental photon noise limit to radial velocity measurements , 2001 .

[5]  Gerard T. van Belle,et al.  The scaling relationship between telescope cost and aperture size for very large telescopes , 2004, SPIE Astronomical Telescopes + Instrumentation.

[6]  Alexander Argyros,et al.  Photonic lanterns: a study of light propagation in multimode to single-mode converters. , 2010, Optics express.

[7]  Antonio Manescau,et al.  High‐precision calibration of spectrographs , 2010 .

[8]  Steven Bloemen,et al.  The BlackGEM Array: Searching for Gravitational Wave Source Counterparts to Study Ultra-Compact Binaries , 2015 .

[9]  Hans Kjeldsen,et al.  Solar-like Oscillations , 2003, Publications of the Astronomical Society of Australia.

[10]  N. Jovanovic,et al.  First starlight spectrum captured using an integrated photonic micro-spectrograph , 2012, 1208.4418.

[11]  Christian Schwab,et al.  Single Mode, Extreme Precision Doppler Spectrographs , 2012, Proceedings of the International Astronomical Union.

[12]  F. Pepe,et al.  A new list of thorium and argon spectral lines in the visible , 2007 .

[13]  Gordon A. H. Walker,et al.  Modal Noise in High‐Resolution, Fiber‐fed Spectra: A Study and Simple Cure , 2001 .

[14]  Carlos Guirao,et al.  PUCHEROS: a cost-effective solution for high-resolution spectroscopy with small telescopes , 2012 .

[15]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[16]  M. Bonnefoy,et al.  Precise radial velocities of giant stars: IX. HD 59686 Ab: a massive circumstellar planet orbiting a giant star in a ~13.6 au eccentric binary system , 2016, 1608.00963.

[17]  Frantz Martinache,et al.  TWO WIDE PLANETARY-MASS COMPANIONS TO SOLAR-TYPE STARS IN UPPER SCORPIUS , 2010, 1011.2201.

[18]  R. P. Butler,et al.  Signals embedded in the radial velocity noise - Periodic variations in the τ Ceti velocities , 2012, 1212.4277.

[19]  R. P. Butler,et al.  Precise radial velocities of giant stars I. Stable stars , 2006, astro-ph/0604502.

[20]  Frantz Martinache,et al.  How to inject light efficiently into single-mode fibers , 2014, Astronomical Telescopes and Instrumentation.

[21]  M J Withford,et al.  Towards femtosecond laser written arrayed waveguide gratings. , 2015, Optics express.

[22]  E. Oliva,et al.  Testing Giano spectral stability , 2012, Other Conferences.

[23]  Nemanja Jovanovic,et al.  Integrated photonic building blocks for next-generation astronomical instrumentation II: the multimode to single mode transition. , 2013, Optics express.

[24]  Gerardo Avila,et al.  Results on fibre scrambling for high accuracy radial velocity measurements , 2010, Astronomical Telescopes + Instrumentation.

[25]  Andreas Quirrenbach,et al.  Stabilizing a Fabry–Perot Etalon Peak to 3 cm s-1 for Spectrograph Calibration , 2014, 1404.0004.

[26]  A. Ghasempour,et al.  A single-mode Echelle spectrograph: eliminating modal variation, enabling higher precision Doppler study , 2012, Other Conferences.

[27]  Sergio G Leon-Saval,et al.  Beating the classical limit: a diffraction-limited spectrograph for an arbitrary input beam. , 2013, Optics express.

[28]  Stephen A. Shectman,et al.  MIKE: A Double Echelle Spectrograph for the Magellan Telescopes at Las Campanas Observatory , 2003, SPIE Astronomical Telescopes + Instrumentation.

[29]  Michael J. Ireland,et al.  RHEA: the ultra-compact replicable high-resolution exoplanet and Asteroseismology spectrograph , 2014, Astronomical Telescopes and Instrumentation.

[30]  Todd R. Hunter,et al.  SCRAMBLING PROPERTIES OF OPTICAL FIBERS AND THE PERFORMANCE OF A DOUBLE SCRAMBLER , 1992 .