A configurational force for adaptive re-meshing of gradient-enhanced poromechanics problems with history-dependent variables

Abstract We introduce a mesh-adaption framework that employs a multi-physical configurational force and Lie algebra to capture multiphysical responses of fluid-infiltrating geological materials while maintaining the efficiency of the computational models. To resolve sharp gradients of both displacement and pore pressure, we introduce an energy-estimate-free re-meshing criterion by extending the configurational force theory to consider the energy dissipation due to the fluid diffusion and the gradient-dependent plastic flow. To establish new equilibria after remeshing, the local tensorial history-dependent variables at the integration points are first decomposed into spectral forms. Then, the principal values and directions are projected onto smooth fields interpolated by the basis function of the finite element space via the Lie-algebra mapping. Our numerical results indicate that this Lie algebra operator in general leads to a new trial state closer to the equilibrium than the ones obtained from the tensor component mapping approach. A new configurational force for dissipative fluid-infiltrating porous materials that exhibit gradient-dependent plastic flow is introduced such that the remeshing may accommodate the need to resolve the sharp pressure gradient as well as the strain localization. The predicted responses are found to be not influenced by the mesh size due to the micromorphic regularization, while the adaptive meshing enables us to capture the width of deformation bands without the necessity of employing fine mesh everywhere in the domain.

[1]  WaiChing Sun,et al.  A semi-implicit discrete-continuum coupling method for porous media based on the effective stress principle at finite strain , 2016 .

[2]  C. Miehe,et al.  Phase-field modelling of ductile fracture: a variational gradient-extended plasticity-damage theory and its micromorphic regularization , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  Klaus-Jürgen Bathe,et al.  Error indicators and adaptive remeshing in large deformation finite element analysis , 1994 .

[4]  Alireza Tabarraei,et al.  Adaptive computations using material forces and residual-based error estimators on quadtree meshes , 2007 .

[5]  Huajian Gao,et al.  Strain gradient plasticity , 2001 .

[6]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[7]  WaiChing Sun,et al.  Lie-group interpolation and variational recovery for internal variables , 2013, Computational Mechanics.

[8]  David Wells,et al.  The deal.II Library, Version 8.4 , 2016, J. Num. Math..

[9]  Fadi Aldakheel,et al.  Micromorphic approach for gradient-extended thermo-elastic–plastic solids in the logarithmic strain space , 2017 .

[10]  Thomas J. R. Hughes,et al.  A phase-field formulation for fracture in ductile materials: Finite deformation balance law derivation, plastic degradation, and stress triaxiality effects , 2016 .

[11]  Ronaldo I. Borja,et al.  Stabilized low-order finite elements for coupled solid-deformation/fluid-diffusion and their application to fault zone transients , 2008 .

[12]  WaiChing Sun,et al.  Modeling the hydro-mechanical responses of strip and circular punch loadings on water-saturated collapsible geomaterials , 2014 .

[13]  M. Ortiz,et al.  A recursive-faulting model of distributed damage in confined brittle materials , 2006 .

[14]  C. Juang,et al.  An experimental investigation of the failure mechanism of simulated transversely isotropic rocks , 2006 .

[15]  Hans Muhlhaus,et al.  A variational principle for gradient plasticity , 1991 .

[16]  R. Borja Plasticity: Modeling & Computation , 2013 .

[17]  J. Reddy,et al.  A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation , 2015 .

[18]  WaiChing Sun,et al.  Computational thermomechanics of crystalline rock, Part I: A combined multi-phase-field/crystal plasticity approach for single crystal simulations , 2018, Computer Methods in Applied Mechanics and Engineering.

[19]  Francisco Armero,et al.  An analysis of strong discontinuities in a saturated poro-plastic solid , 1999 .

[20]  Alejandro Mota,et al.  A variational constitutive model for porous metal plasticity , 2006 .

[21]  Marc G. D. Geers,et al.  Nonlocal implicit gradient-enhanced elasto-plasticity for the modelling of softening behaviour , 2003 .

[22]  Michael Ortiz,et al.  Adaptive mesh refinement in strain localization problems , 1991 .

[23]  R. Peerlings On the role of moving elastic–plastic boundaries in strain gradient plasticity , 2006 .

[24]  K. Bennett,et al.  Generalized radial‐return mapping algorithm for anisotropic von Mises plasticity framed in material eigenspace , 2018, International Journal for Numerical Methods in Engineering.

[25]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[26]  Jörn Mosler,et al.  An error‐estimate‐free and remapping‐free variational mesh refinement and coarsening method for dissipative solids at finite strains , 2009 .

[27]  M. Ortiz,et al.  A variational Cam-clay theory of plasticity , 2004 .

[28]  Walter Wunderlich,et al.  A hierarchical adaptive finite element strategy for elastic–plastic problems , 1999 .

[29]  Ronaldo I. Borja,et al.  Coupling plasticity and energy-conserving elasticity models for clays , 1997 .

[30]  Klaus-Jürgen Bathe,et al.  The use of nodal point forces to improve element stresses , 2011 .

[31]  Ronaldo I. Borja,et al.  One-step and linear multistep methods for nonlinear consolidation , 1991 .

[32]  W. Bangerth,et al.  deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.

[33]  WaiChing Sun,et al.  Coupled phase-field and plasticity modeling of geological materials: From brittle fracture to ductile flow , 2018 .

[34]  Milan Jirásek,et al.  Nonlocal integral formulations of plasticity and damage : Survey of progress , 2002 .

[35]  Huajian Gao,et al.  Mechanism-based strain gradient plasticity— I. Theory , 1999 .

[36]  T. Truster,et al.  Variational projection methods for gradient crystal plasticity using Lie algebras , 2017 .

[37]  M. Gurtin,et al.  Configurational Forces as Basic Concepts of Continuum Physics , 1999 .

[38]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[39]  Peter Hansbo,et al.  Adaptive strategies and error control for computing material forces in fracture mechanics , 2004 .

[40]  WaiChing Sun,et al.  A SEMI-IMPLICIT MICROPLAR DISCRETE-TO-CONTINUUM METHOD FOR GRANULAR MATERIALS , 2016 .

[41]  Ruben Juanes,et al.  Stability, Accuracy and Efficiency of Sequential Methods for Coupled Flow and Geomechanics , 2009 .

[42]  C. Miehe,et al.  Coupled thermomechanical response of gradient plasticity , 2017 .

[43]  S. Forest Nonlinear regularization operators as derived from the micromorphic approach to gradient elasticity, viscoplasticity and damage , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[44]  WaiChing Sun,et al.  IDENTIFYING MATERIAL PARAMETERS FOR A MICRO-POLAR PLASTICITY MODEL VIA X-RAY MICRO-COMPUTED TOMOGRAPHIC (CT) IMAGES: LESSONS LEARNED FROM THE CURVE-FITTING EXERCISES , 2016 .

[45]  WaiChing Sun,et al.  A unified variational eigen-erosion framework for interacting brittle fractures and compaction bands in fluid-infiltrating porous media , 2017 .

[46]  D. Borst,et al.  Fundamental issues in finite element analyses of localization of deformation , 1993 .

[47]  R. Mueller,et al.  Use of material forces in adaptive finite element methods , 2004 .

[48]  Christian Miehe,et al.  Phase‐field modeling of ductile fracture at finite strains: A robust variational‐based numerical implementation of a gradient‐extended theory by micromorphic regularization , 2017 .

[49]  A. Pandolfi,et al.  A Multiscale Microstructural Model of Damage and Permeability in Fractured Solids , 2016 .

[50]  S. Willson,et al.  Development of an Orthotropic 3D Elastoplastic Material Model for Shale , 2002 .

[51]  O. C. Zienkiewicz,et al.  Adaptivity and mesh generation , 1991 .

[52]  Michael Kaliske,et al.  Material forces for inelastic models at large strains: application to fracture mechanics , 2007 .

[53]  Yang Liu,et al.  A nonlocal multiscale discrete‐continuum model for predicting mechanical behavior of granular materials , 2016 .

[54]  WaiChing Sun,et al.  A stabilized finite element formulation for monolithic thermo‐hydro‐mechanical simulations at finite strain , 2015 .

[55]  Zdeněk P. Bažant,et al.  Scaling of dislocation-based strain-gradient plasticity , 2002 .

[56]  WaiChing Sun,et al.  Circumventing mesh bias by r- and h-adaptive techniques for variational eigenfracture , 2019, International Journal of Fracture.

[57]  O. C. Zienkiewicz,et al.  A simple error estimator and adaptive procedure for practical engineerng analysis , 1987 .

[58]  Jean-Herve Prevost,et al.  Stabilization procedures in coupled poromechanics problems: A critical assessment , 2011 .

[59]  Jean Vaunat,et al.  Revisiting the thermodynamics of hardening plasticity for unsaturated soils , 2010, 1010.2598.

[60]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[61]  Mgd Marc Geers,et al.  A critical comparison of nonlocal and gradient-enhanced softening continua , 2001 .

[62]  J. Mosler,et al.  On the implementation of rate-independent standard dissipative solids at finite strain – Variational constitutive updates , 2010 .

[63]  WaiChing Sun,et al.  A unified method to predict diffuse and localized instabilities in sands , 2013 .

[64]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[65]  Huajian Gao,et al.  Indentation size effects in crystalline materials: A law for strain gradient plasticity , 1998 .

[66]  Magdalena Ortiz,et al.  Variational h‐adaption in finite deformation elasticity and plasticity , 2007 .

[67]  P. Steinmann,et al.  Secret and joy of configurational mechanics: From foundations in continuum mechanics to applications in computational mechanics , 2009 .

[68]  Gérard A. Maugin,et al.  Configurational Forces: Thermomechanics, Physics, Mathematics, and Numerics , 2010 .

[69]  L. Walpole,et al.  Fourth-rank tensors of the thirty-two crystal classes: multiplication tables , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[70]  R. Borst,et al.  Phenomenological nonlocal approaches based on implicit gradient-enhanced damage , 2000 .

[71]  Noboru Kikuchi,et al.  A method of grid optimization for finite element methods , 1983 .

[72]  WaiChing Sun,et al.  A micromorphically regularized Cam-clay model for capturing size-dependent anisotropy of geomaterials , 2019, Computer Methods in Applied Mechanics and Engineering.

[73]  Michael Ortiz,et al.  A multiscale model of distributed fracture and permeability in solids in all-round compression , 2016, 1602.03801.

[74]  WaiChing Sun,et al.  Meta-modeling game for deriving theoretical-consistent, micro-structural-based traction-separation laws via deep reinforcement learning , 2018, Computer Methods in Applied Mechanics and Engineering.

[75]  Joshua A. White,et al.  Thermoplasticity and strain localization in transversely isotropic materials based on anisotropic critical state plasticity , 2016 .

[76]  Christian Miehe,et al.  Phase field modeling of fracture in multi-physics problems. Part III. Crack driving forces in hydro-poro-elasticity and hydraulic fracturing of fluid-saturated porous media , 2016 .

[77]  R. Mueller,et al.  On material forces and finite element discretizations , 2002 .

[78]  WaiChing Sun,et al.  A stabilized assumed deformation gradient finite element formulation for strongly coupled poromechanical simulations at finite strain , 2013 .

[79]  Ioannis Vardoulakis,et al.  A gradient flow theory of plasticity for granular materials , 1991 .

[80]  C. Miehe,et al.  Mixed variational principles and robust finite element implementations of gradient plasticity at small strains , 2013 .

[81]  Ronaldo I. Borja,et al.  Stabilized mixed finite elements for deformable porous media with double porosity , 2015 .

[82]  고성현,et al.  Mechanism-based Strain Gradient Plasticity 를 이용한 나노 인덴테이션의 해석 , 2004 .

[83]  Kurt Inderbitzin The Deal , 2005 .

[84]  Qiang Du,et al.  A cooperative game for automated learning of elasto-plasticity knowledge graphs and models with AI-guided experimentation , 2019, Computational Mechanics.

[85]  Ronaldo I. Borja,et al.  Cam-Clay plasticity part III: Extension of the infinitesimal model to include finite strains , 1998 .

[86]  J. P. Henry,et al.  Laboratory investigation of the mechanical behaviour of Tournemire shale , 1997 .

[87]  J. Fish,et al.  A staggered nonlocal multiscale model for a heterogeneous medium , 2012 .

[88]  M. Ortiz,et al.  The variational formulation of viscoplastic constitutive updates , 1999 .

[89]  M. Ortiz,et al.  A linearized porous brittle damage material model with distributed frictional-cohesive faults , 2016 .

[90]  WaiChing Sun,et al.  Computational thermo-hydro-mechanics for multiphase freezing and thawing porous media in the finite deformation range , 2017 .

[91]  Dietmar Gross,et al.  Einige Erhaltungssätze der Kontinuumsmechanik vom J-Integral-Typ , 1981 .

[92]  Gérard A. Maugin,et al.  Material Forces: Concepts and Applications , 1995 .

[93]  Frank Chongwoo Park,et al.  Smooth invariant interpolation of rotations , 1997, TOGS.

[94]  WaiChing Sun,et al.  A mixed-mode phase field fracture model in anisotropic rocks with consistent kinematics , 2018, Computer Methods in Applied Mechanics and Engineering.

[95]  Samuel Forest,et al.  Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage , 2009 .

[96]  P. Steinmann,et al.  On deformational and configurational poro-mechanics: dissipative versus non-dissipative modelling of two-phase solid/fluid mixtures , 2010 .

[97]  Zhijun Cai,et al.  Mixed Arlequin method for multiscale poromechanics problems , 2017 .

[98]  René de Borst,et al.  Gradient-dependent plasticity: formulation and algorithmic aspects , 1992 .

[99]  A. Needleman Material rate dependence and mesh sensitivity in localization problems , 1988 .

[100]  N. Fleck,et al.  Strain gradient plasticity , 1997 .

[101]  K. Roscoe,et al.  ON THE GENERALIZED STRESS-STRAIN BEHAVIOUR OF WET CLAY , 1968 .

[102]  Bernhard A. Schrefler,et al.  On adaptive refinement techniques in multi-field problems including cohesive fracture , 2006 .

[103]  R. Borja,et al.  On the strength of transversely isotropic rocks , 2018, International Journal for Numerical and Analytical Methods in Geomechanics.

[104]  J. Rice,et al.  CONDITIONS FOR THE LOCALIZATION OF DEFORMATION IN PRESSURE-SENSITIVE DILATANT MATERIALS , 1975 .

[105]  M. Biot THEORY OF ELASTICITY AND CONSOLIDATION FOR A POROUS ANISOTROPIC SOLID , 1955 .

[106]  Laura De Lorenzis,et al.  A review on phase-field models of brittle fracture and a new fast hybrid formulation , 2015 .

[107]  Boris Jeremić,et al.  COMPUTATIONAL GEOMECHANICS , 2007 .

[108]  A. Cemal Eringen,et al.  On nonlocal plasticity , 1981 .

[109]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[110]  Kun Wang,et al.  Meta-modeling game for deriving theoretical-consistent, micro-structural-based traction-separation laws via deep reinforcement learning , 2018, Computer Methods in Applied Mechanics and Engineering.

[111]  D. McAdams Deal , 2020, The Strange Case of Donald J. Trump.