A High Order Mixed-FEM for Diffusion Problems on Curved Domains

We propose and analyze a high order mixed finite element method for diffusion problems with Dirichlet boundary condition on a domain $$\Omega $$Ω with curved boundary $$\Gamma $$Γ. The method is based on approximating $$\Omega $$Ω by a polygonal subdomain $$\mathrm {D}_{h}$$Dh, with boundary $$\Gamma _h$$Γh, where a high order conforming Galerkin method is considered to compute the solution. To approximate the Dirichlet data on the computational boundary $$\Gamma _h$$Γh, we employ a transferring technique based on integrating the extrapolated discrete gradient along segments joining $$\Gamma _h$$Γh and $$\Gamma $$Γ. Considering general finite dimensional subspaces we prove that the resulting Galerkin scheme, which is $${\mathbf {H}}(\mathrm {div}\,; \mathrm {D}_{h})$$H(div;Dh)-conforming, is well-posed provided suitable hypotheses on the aforementioned subspaces and integration segments. A feasible choice of discrete spaces is given by Raviart–Thomas elements of order $$k\ge 0$$k≥0 for the vectorial variable and discontinuous polynomials of degree k for the scalar variable, yielding optimal convergence if the distance between $$\Gamma _h$$Γh and $$\Gamma $$Γ is at most of the order of the meshsize h. We also approximate the solution in $$\mathrm {D}_{h}^{c}\,{:}{=}\,\Omega \backslash \overline{\mathrm {D}_{h}}$$Dhc:=Ω\Dh¯ and derive the corresponding error estimates. Numerical experiments illustrate the performance of the scheme and validate the theory.

[1]  Jean E. Roberts,et al.  Mixed and hybrid methods , 1991 .

[2]  Gabriel N. Gatica,et al.  Analysis of an augmented mixed‐primal formulation for the stationary Boussinesq problem , 2016 .

[3]  Fleurianne Bertrand,et al.  Parametric Raviart-Thomas Elements for Mixed Methods on Domains with Curved Surfaces , 2016, SIAM J. Numer. Anal..

[4]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[5]  A. Ern,et al.  Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .

[6]  G. Gatica A Simple Introduction to the Mixed Finite Element Method: Theory and Applications , 2014 .

[7]  Randall J. LeVeque,et al.  Immersed Interface Methods for Stokes Flow with Elastic Boundaries or Surface Tension , 1997, SIAM J. Sci. Comput..

[8]  Bernardo Cockburn,et al.  Solving Convection-Diffusion Problems on Curved Domains by Extensions from Subdomains , 2013, J. Sci. Comput..

[9]  Bernardo Cockburn,et al.  Solving Dirichlet Boundary-value Problems on Curved Domains by Extensions from Subdomains , 2012, SIAM J. Sci. Comput..

[10]  E. Stein Singular Integrals and Di?erentiability Properties of Functions , 1971 .

[11]  Ricardo Ruiz-Baier,et al.  A mixed finite element method for Darcy's equations with pressure dependent porosity , 2015, Math. Comput..

[12]  Yoichiro Mori Convergence proof of the velocity field for a stokes flow immersed boundary method , 2008 .

[13]  C. Peskin Flow patterns around heart valves: A numerical method , 1972 .

[14]  Manuel Solano,et al.  A High Order HDG Method for Stokes Flow in Curved Domains , 2019, J. Sci. Comput..

[15]  R. Hiptmair Finite elements in computational electromagnetism , 2002, Acta Numerica.

[16]  James H. Bramble,et al.  A robust finite element method for nonhomogeneous Dirichlet problems in domains with curved boundaries , 1994 .

[17]  M. Lenoir Optimal isoparametric finite elements and error estimates for domains involving curved boundaries , 1986 .

[18]  Wujun Zhang,et al.  A Posteriori Error Estimates for HDG Methods , 2012, J. Sci. Comput..

[19]  Veronika Pillwein,et al.  Sparsity optimized high order finite element functions for H(div) on simplices , 2012, Numerische Mathematik.

[20]  Fernando Reitich,et al.  Boundary-Conforming Discontinuous Galerkin Methods via Extensions from Subdomains , 2010, J. Sci. Comput..

[21]  James H. Bramble,et al.  A finite element method for interface problems in domains with smooth boundaries and interfaces , 1996, Adv. Comput. Math..

[22]  Wei Cai,et al.  Analysis and Application of an Orthogonal Nodal Basis on Triangles for Discontinuous Spectral Element Methods , 2005 .

[23]  Vidar Thomée,et al.  Projection methods for Dirichlet’s problem in approximating polygonal domains with boundary-value corrections , 1972 .

[24]  Weifeng Qiu,et al.  A priori error analysis for HDG methods using extensions from subdomains to achieve boundary conformity , 2013, Math. Comput..

[25]  Francisco-Javier Sayas,et al.  Coupling at a Distance HDG and BEM , 2012, SIAM J. Sci. Comput..

[26]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[27]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[28]  Fleurianne Bertrand,et al.  First-order System Least Squares on Curved Boundaries: Higher-order Raviart-Thomas Elements , 2014, SIAM J. Numer. Anal..

[29]  Timothy A. Davis,et al.  Algorithm 832: UMFPACK V4.3---an unsymmetric-pattern multifrontal method , 2004, TOMS.

[30]  P. Raviart,et al.  Finite Element Approximation of the Navier-Stokes Equations , 1979 .