On the Parameterized Complexity of Reconfiguration Problems
暂无分享,去创建一个
[1] Peter Damaschke,et al. The union of minimal hitting sets: Parameterized combinatorial bounds and counting , 2009, J. Discrete Algorithms.
[2] Paul S. Bonsma,et al. Finding Paths between graph colourings: PSPACE-completeness and superpolynomial distances , 2007, Theor. Comput. Sci..
[3] Rolf Niedermeier,et al. Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization , 2006, J. Comput. Syst. Sci..
[4] Karen Seyffarth,et al. The k-Dominating Graph , 2012, Graphs Comb..
[5] Venkatesh Raman,et al. Parameterized complexity of finding subgraphs with hereditary properties , 2000, Theor. Comput. Sci..
[6] Jan van den Heuvel,et al. Finding paths between 3‐colorings , 2011, IWOCA.
[7] Hans L. Bodlaender,et al. A Cubic Kernel for Feedback Vertex Set , 2007, STACS.
[8] Paul S. Bonsma,et al. The complexity of rerouting shortest paths , 2010, Theor. Comput. Sci..
[9] Rolf Niedermeier,et al. Invitation to Fixed-Parameter Algorithms , 2006 .
[10] Jörg Flum,et al. Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.
[11] Takehiro Ito,et al. On the complexity of reconfiguration problems , 2011, Theor. Comput. Sci..
[12] Marthe Bonamy,et al. Recoloring bounded treewidth graphs , 2013, Electron. Notes Discret. Math..
[13] Martin Milanic,et al. Shortest paths between shortest paths , 2011, Theor. Comput. Sci..
[14] John M. Lewis,et al. The Node-Deletion Problem for Hereditary Properties is NP-Complete , 1980, J. Comput. Syst. Sci..
[15] Takehiro Ito,et al. Reconfiguration of list edge-colorings in a graph , 2012, Discret. Appl. Math..
[16] Christos H. Papadimitriou,et al. The Connectivity of Boolean Satisfiability: Computational and Structural Dichotomies , 2006, SIAM J. Comput..
[17] Michael R. Fellows,et al. Local Search: Is Brute-Force Avoidable? , 2009, IJCAI.
[18] Jan van den Heuvel,et al. Mixing 3-colourings in bipartite graphs , 2007, Eur. J. Comb..
[19] Jan van den Heuvel,et al. Connectedness of the graph of vertex-colourings , 2008, Discret. Math..
[20] Erik D. Demaine,et al. PSPACE-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation , 2002, Theor. Comput. Sci..