On the Parameterized Complexity of Reconfiguration Problems

We present the first results on the parameterized complexity of reconfiguration problems, where a reconfiguration version of an optimization problem Q takes as input two feasible solutions S and T and determines if there is a sequence of reconfiguration steps that can be applied to transform S into T such that each step results in a feasible solution to Q. For most of the results in this paper, S and T are subsets of vertices of a given graph and a reconfiguration step adds or deletes a vertex. Our study is motivated by recent results establishing that for most NP-hard problems, the classical complexity of reconfiguration is PSPACE-complete.

[1]  Peter Damaschke,et al.  The union of minimal hitting sets: Parameterized combinatorial bounds and counting , 2009, J. Discrete Algorithms.

[2]  Paul S. Bonsma,et al.  Finding Paths between graph colourings: PSPACE-completeness and superpolynomial distances , 2007, Theor. Comput. Sci..

[3]  Rolf Niedermeier,et al.  Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization , 2006, J. Comput. Syst. Sci..

[4]  Karen Seyffarth,et al.  The k-Dominating Graph , 2012, Graphs Comb..

[5]  Venkatesh Raman,et al.  Parameterized complexity of finding subgraphs with hereditary properties , 2000, Theor. Comput. Sci..

[6]  Jan van den Heuvel,et al.  Finding paths between 3‐colorings , 2011, IWOCA.

[7]  Hans L. Bodlaender,et al.  A Cubic Kernel for Feedback Vertex Set , 2007, STACS.

[8]  Paul S. Bonsma,et al.  The complexity of rerouting shortest paths , 2010, Theor. Comput. Sci..

[9]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[10]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[11]  Takehiro Ito,et al.  On the complexity of reconfiguration problems , 2011, Theor. Comput. Sci..

[12]  Marthe Bonamy,et al.  Recoloring bounded treewidth graphs , 2013, Electron. Notes Discret. Math..

[13]  Martin Milanic,et al.  Shortest paths between shortest paths , 2011, Theor. Comput. Sci..

[14]  John M. Lewis,et al.  The Node-Deletion Problem for Hereditary Properties is NP-Complete , 1980, J. Comput. Syst. Sci..

[15]  Takehiro Ito,et al.  Reconfiguration of list edge-colorings in a graph , 2012, Discret. Appl. Math..

[16]  Christos H. Papadimitriou,et al.  The Connectivity of Boolean Satisfiability: Computational and Structural Dichotomies , 2006, SIAM J. Comput..

[17]  Michael R. Fellows,et al.  Local Search: Is Brute-Force Avoidable? , 2009, IJCAI.

[18]  Jan van den Heuvel,et al.  Mixing 3-colourings in bipartite graphs , 2007, Eur. J. Comb..

[19]  Jan van den Heuvel,et al.  Connectedness of the graph of vertex-colourings , 2008, Discret. Math..

[20]  Erik D. Demaine,et al.  PSPACE-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation , 2002, Theor. Comput. Sci..