Second-Order Sliding Mode Approaches to Control and Estimation for Fractional Order Dynamics

This chapter outlines some results concerning the application of second-order sliding-mode techniques in the framework of control and estimation problems for some classes of fractional-order systems (FOS). Concerning the control problems, a second-order sliding mode control approach is developed to stabilize a class of linear uncertain multivariable fractional-order dynamics. Concerning estimation and observation problems, two main results are illustrated. A method for reconstructing in finite time an external disturbance acting on a known FOS is presented, and, as a second instance, a method for estimating the discrete state of a switched FOS is discussed. Both the schemes make use of second-order sliding mode observers. The method for discrete state reconstruction in switched FOS find useful application in the framework of fault detection, as shown in the experimental section part. Key point of all the approaches herein presented is the use of fractional-order sliding manifolds. Simple controller/observer tuning formulas are constructively developed along the paper by Lyapunov analysis. Simulation and experimental results confirm the expected performance.

[1]  S. Manabe The non-integer integral and its application to control systems. , 1961 .

[2]  Jaime A. Moreno,et al.  A Lyapunov approach to second-order sliding mode controllers and observers , 2008, 2008 47th IEEE Conference on Decision and Control.

[3]  M. Thoma,et al.  Variable Structure Systems, Sliding Mode and Nonlinear Control , 1999 .

[4]  Alain Oustaloup,et al.  Flatness Control of a Fractional Thermal System , 2007 .

[5]  J. A. Tenreiro Machado,et al.  New Trends in Nanotechnology and Fractional Calculus Applications , 2010 .

[6]  Igor Podlubny,et al.  On Fractional Order Disturbance Observer , 2003 .

[7]  Alexander S. Poznyak,et al.  Lyapunov function design for finite-time convergence analysis: "Twisting" controller for second-order sliding mode realization , 2009, Autom..

[8]  Maamar Bettayeb,et al.  A NOTE ON THE CONTROLLABILITY AND THE OBSERVABILITY OF FRACTIONAL DYNAMICAL SYSTEMS , 2006 .

[9]  Maamar Bettayeb,et al.  A sliding mode control for linear fractional systems with input and state delays , 2009 .

[10]  Yangquan Chen,et al.  Fractional order [proportional derivative] controller for a class of fractional order systems , 2009, Autom..

[11]  Alessandro Pisano,et al.  Sliding mode control approaches to the robust regulation of linear multivariable fractional‐order dynamics , 2010 .

[12]  R. Magin Fractional Calculus in Bioengineering , 2006 .

[13]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[14]  Arie Levant,et al.  Higher-order sliding modes, differentiation and output-feedback control , 2003 .

[15]  O. Agrawal,et al.  Advances in Fractional Calculus , 2007 .

[16]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[17]  Stevan Pilipović,et al.  A diffusion wave equation with two fractional derivatives of different order , 2007 .

[18]  T. Hartley,et al.  Dynamics and Control of Initialized Fractional-Order Systems , 2002 .

[19]  Stanislav V. Emelyanov,et al.  Control of Complex and Uncertain Systems , 2000 .

[20]  Sara Dadras,et al.  Control of a fractional-order economical system via sliding mode , 2010 .

[21]  Zbigniew Bartosiewicz,et al.  On Observability of Nonlinear Discrete-Time Fractional-Order Control Systems , 2010 .

[22]  Mehmet Önder Efe,et al.  Fractional Order Sliding Mode Controller Design for Fractional Order Dynamic Systems , 2010 .

[23]  Lokenath Debnath,et al.  A brief historical introduction to fractional calculus , 2004 .

[24]  Yongsheng Ding,et al.  A fractional-order differential equation model of HIV infection of CD4+ T-cells , 2009, Math. Comput. Model..

[25]  Antonella Ferrara,et al.  On second order sliding mode controllers , 1998 .

[26]  Vadim I. Utkin,et al.  Sliding Modes in Control and Optimization , 1992, Communications and Control Engineering Series.

[27]  Riewe,et al.  Nonconservative Lagrangian and Hamiltonian mechanics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[28]  Duarte Valério,et al.  Fractional sliding mode control , 2012 .

[29]  O. Agrawal,et al.  Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering , 2007 .

[30]  Samir Ladaci,et al.  On Fractional Adaptive Control , 2006 .

[31]  Yangquan Chen,et al.  Robust stability check of fractional order linear time invariant systems with interval uncertainties , 2005, IEEE International Conference Mechatronics and Automation, 2005.

[32]  O. Agrawal,et al.  A Hamiltonian Formulation and a Direct Numerical Scheme for Fractional Optimal Control Problems , 2007 .

[33]  Cosku Kasnakoglu,et al.  A fractional adaptation law for sliding mode control , 2008 .

[34]  Teodor M. Atanackovic,et al.  On a distributed derivative model of a viscoelastic body , 2003 .

[35]  S. V. Emel'yanov,et al.  High-order sliding modes in control systems , 1996 .

[36]  I. Podlubny,et al.  Analogue Realizations of Fractional-Order Controllers , 2002 .

[37]  O. Agrawal A General Formulation and Solution Scheme for Fractional Optimal Control Problems , 2004 .

[38]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[39]  Yangquan Chen,et al.  Two direct Tustin discretization methods for fractional-order differentiator/integrator , 2003, J. Frankl. Inst..

[40]  Zoran D. Jelicic,et al.  Optimality conditions and a solution scheme for fractional optimal control problems , 2009 .

[41]  Om P. Agrawal,et al.  Formulation of Euler–Lagrange equations for fractional variational problems , 2002 .

[42]  A. Levant Sliding order and sliding accuracy in sliding mode control , 1993 .

[43]  Hebertt Sira Ramírez,et al.  A Generalized PI Sliding Mode and PWM Control of Switched Fractional Systems , 2008 .

[44]  I. Podlubny Fractional differential equations , 1998 .

[45]  Mohammad Saleh Tavazoei,et al.  A note on the stability of fractional order systems , 2009, Math. Comput. Simul..

[46]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[47]  Y. Q. Chen,et al.  Using Fractional Order Adjustment Rules and Fractional Order Reference Models in Model-Reference Adaptive Control , 2002 .

[48]  B. Molinari A strong controllability and observability in linear multivariable control , 1976 .

[49]  Remo Ostini,et al.  New perspectives and applications , 2010 .

[50]  Xavier Moreau,et al.  The CRONE Suspension , 1996 .

[51]  G. Bartolini,et al.  Modern sliding mode control theory : new perspectives and applications , 2008 .

[52]  Christopher Edwards,et al.  Sliding mode control : theory and applications , 1998 .

[53]  S. Das,et al.  Functional Fractional Calculus for System Identification and Controls , 2007 .

[54]  Vadim I. Utkin,et al.  A control engineer's guide to sliding mode control , 1999, IEEE Trans. Control. Syst. Technol..

[55]  José António Tenreiro Machado,et al.  Time domain design of fractional differintegrators using least-squares , 2006, Signal Process..