Autocrine VEGF – VEGFR 2 – Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth

The Rockefeller University Press $30.00 J. Exp. Med. Vol. 209 No. 3 507-520 www.jem.org/cgi/doi/10.1084/jem.20111424 507 GBM, the most prevalent primary malignant brain tumor in adults, is essentially universally fatal, despite maximal therapy. Robust neoangiogenesis and intratumoral heterogeneity are hallmark features of these brain malignancies, which contribute to their phenotypic plasticity and therapeutic resistance (Shen et al., 2008; Li et al., 2009a; Ricci-Vitiani et al., 2010; Wang et al., 2010; Soda et al., 2011). The latter includes drugs that target the angiogenic interplay between vascular endothelial growth factor (VEGF) and its receptors, VEGFRs. Recent observations suggest that anti-VEGF compounds (blocking antibodies and tyrosine kinase inhibitors), administered in combination with or before radiation, improve the responsiveness of solid tumors through radiosensitizing effects (Winkler et al., 2004; Citrin et al., 2006; Folkins et al., 2007; Vredenburgh et al., 2007; Desjardins et al., 2008; Ellis and Hicklin, 2008; Friedman et al., 2009; Gururangan et al., 2010; Lai et al., 2011). The concept of cancer stem-like cells (CSCs) in general, and their presence in glioblastoma CORRESPONDENCE J. Bartek: jb@cancer.dk OR J.N. Rich: richj@ccf.org

[1]  Choowong Auesukaree,et al.  Analysis of Gene Expression , 2019, PCR Protocols in Molecular Toxicology.

[2]  Kurt Ballmer-Hofer,et al.  Neuropilin-1 promotes VEGFR-2 trafficking through Rab11 vesicles thereby specifying signal output. , 2011, Blood.

[3]  N. Gamper,et al.  The VEGFR2 receptor tyrosine kinase undergoes constitutive endosome-to-plasma membrane recycling. , 2011, Biochemical and biophysical research communications.

[4]  S. Pastorino,et al.  Transdifferentiation of glioblastoma cells into vascular endothelial cells , 2011, Proceedings of the National Academy of Sciences.

[5]  Paul S Mischel,et al.  Phase II study of bevacizumab plus temozolomide during and after radiation therapy for patients with newly diagnosed glioblastoma multiforme. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[6]  L. Ricci-Vitiani,et al.  Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells , 2011, Nature.

[7]  B. Kristensen,et al.  CD133+ niches and single cells in glioblastoma have different phenotypes , 2011, Journal of Neuro-Oncology.

[8]  Rong Wang,et al.  Glioblastoma stem-like cells give rise to tumour endothelium , 2010, Nature.

[9]  J. Reijneveld,et al.  UvA-DARE ( Digital Academic Repository ) Angiogenesis inhibition in high grade glioma Verhoeff , 2009 .

[10]  R. Gilbertson,et al.  Lack of efficacy of bevacizumab plus irinotecan in children with recurrent malignant glioma and diffuse brainstem glioma: a Pediatric Brain Tumor Consortium study. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[11]  R. McLendon,et al.  Integrin alpha 6 regulates glioblastoma stem cells. , 2010, Cell stem cell.

[12]  H. Fine,et al.  Bevacizumab for malignant gliomas. , 2010, Archives of neurology.

[13]  I. Okayasu,et al.  Autocrine and paracrine roles of VEGF/VEGFR-2 and VEGF-C/VEGFR-3 signaling in angiosarcomas of the scalp and face. , 2010, Human pathology.

[14]  C. Allerston,et al.  Small Molecule Inhibitors of the Neuropilin-1 Vascular Endothelial Growth Factor A (VEGF-A) Interaction† , 2010, Journal of medicinal chemistry.

[15]  Shahin Rafii,et al.  Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors , 2010, Nature Reviews Cancer.

[16]  Miguel C. Seabra,et al.  Rab27a and Rab27b control different steps of the exosome secretion pathway , 2010, Nature Cell Biology.

[17]  Yaojiong Wu,et al.  CD133 as a marker for cancer stem cells: progresses and concerns. , 2009, Stem cells and development.

[18]  L. Deangelis,et al.  Patterns of relapse and prognosis after bevacizumab failure in recurrent glioblastoma , 2009, Neurology.

[19]  P. Wen,et al.  Antiangiogenic therapies for high-grade glioma , 2009, Nature Reviews Neurology.

[20]  T. Mikkelsen,et al.  Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[21]  R. Kerbel,et al.  Glioma tumor stem-like cells promote tumor angiogenesis and vasculogenesis via vascular endothelial growth factor and stromal-derived factor 1. , 2009, Cancer research.

[22]  Hui Wang,et al.  Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. , 2009, Cancer cell.

[23]  H. Fine,et al.  SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. , 2009, Cell stem cell.

[24]  Hui Wang,et al.  Turning Cancer Stem Cells Inside Out: An Exploration of Glioma Stem Cell Signaling Pathways* , 2009, The Journal of Biological Chemistry.

[25]  M. Meissner,et al.  Down-regulation of vascular endothelial growth factor receptor 2 is a major molecular determinant of proteasome inhibitor-mediated antiangiogenic action in endothelial cells. , 2009, Cancer research.

[26]  O. Kalita,et al.  Analysis of VEGF, Flt-1, Flk-1, nestin and MMP-9 in relation to astrocytoma pathogenesis and progression. , 2009, Neoplasma.

[27]  Miguel C. Seabra,et al.  1 Rab 27 a and Rab 27 b control different steps of the exosome secretion pathway , 2009 .

[28]  L. Stalpers,et al.  Concerns about anti-angiogenic treatment in patients with glioblastoma multiforme , 2009, BMC Cancer.

[29]  R. McLendon,et al.  Brain Cancer Stem Cells Display Preferential Sensitivity to Akt Inhibition , 2008, Stem cells.

[30]  A. Friedman,et al.  Bevacizumab Plus Irinotecan in Recurrent WHO Grade 3 Malignant Gliomas , 2008, Clinical Cancer Research.

[31]  J. Bartek,et al.  Autocrine regulation of glioblastoma cell-cycle progression, viability and radioresistance through the VEGF-VEGFR2 (KDR) interplay , 2008, Cell cycle.

[32]  L. Ellis,et al.  VEGF-targeted therapy: mechanisms of anti-tumour activity , 2008, Nature Reviews Cancer.

[33]  Dong-Sup Lee,et al.  Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas , 2008, Laboratory Investigation.

[34]  J. Rich,et al.  Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[35]  M. Shibuya Vascular endothelial growth factor-dependent and -independent regulation of angiogenesis. , 2008, BMB reports.

[36]  S. Barsky,et al.  Precancerous Stem Cells Can Serve As Tumor Vasculogenic Progenitors , 2008, PloS one.

[37]  Jian Wang,et al.  CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells , 2008, International journal of cancer.

[38]  Peter Canoll,et al.  Identification of A2B5+CD133- tumor-initiating cells in adult human gliomas. , 2008, Neurosurgery.

[39]  John Sampson,et al.  Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. , 2007, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[40]  J. Rich,et al.  Cancer stem cells in radiation resistance. , 2007, Cancer research.

[41]  R. Gilbertson,et al.  Making a tumour's bed: glioblastoma stem cells and the vascular niche , 2007, Nature Reviews Cancer.

[42]  T. Mikkelsen,et al.  Neuropilin-1 promotes human glioma progression through potentiating the activity of the HGF/SF autocrine pathway , 2007, Oncogene.

[43]  Alexander Brawanski,et al.  CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. , 2007, Cancer research.

[44]  D. Hicklin,et al.  Anticancer therapies combining antiangiogenic and tumor cell cytotoxic effects reduce the tumor stem-like cell fraction in glioma xenograft tumors. , 2007, Cancer research.

[45]  Franklin Peale,et al.  Blocking neuropilin-1 function has an additive effect with anti-VEGF to inhibit tumor growth. , 2007, Cancer cell.

[46]  Zhifeng Xiao,et al.  Upregulation of Flk-1 by bFGF via the ERK pathway is essential for VEGF-mediated promotion of neural stem cell proliferation , 2007, Cell Research.

[47]  I. Bayazitov,et al.  A perivascular niche for brain tumor stem cells. , 2007, Cancer cell.

[48]  Mark W. Dewhirst,et al.  Glioma stem cells promote radioresistance by preferential activation of the DNA damage response , 2006, Nature.

[49]  K. Black,et al.  Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma , 2006, Molecular Cancer.

[50]  Aleksander S. Popel,et al.  Targeting Neuropilin-1 to Inhibit VEGF Signaling in Cancer: Comparison of Therapeutic Approaches , 2006, PLoS Comput. Biol..

[51]  P. Wen,et al.  Glioma Therapy in Adults , 2006, The neurologist.

[52]  I. Jonassen,et al.  Angiogenesis-independent tumor growth mediated by stem-like cancer cells , 2006, Proceedings of the National Academy of Sciences.

[53]  J. Norman,et al.  VEGF regulates the mobilization of VEGFR2/KDR from an intracellular endothelial storage compartment. , 2006, Blood.

[54]  Qiulian Wu,et al.  Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. , 2006, Cancer research.

[55]  F. Orsenigo,et al.  Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments , 2006, The Journal of cell biology.

[56]  Anne E Carpenter,et al.  A Lentiviral RNAi Library for Human and Mouse Genes Applied to an Arrayed Viral High-Content Screen , 2006, Cell.

[57]  S. Shintani,et al.  Anti-tumor effect of radiation response by combined treatment with angiogenesis inhibitor, TNP-470, in oral squamous cell carcinoma. , 2006, Oral oncology.

[58]  Deborah Citrin,et al.  Combining radiotherapy and angiogenesis inhibitors: clinical trial design. , 2006, International journal of radiation oncology, biology, physics.

[59]  I. Verma,et al.  Production and purification of lentiviral vectors , 2006, Nature Protocols.

[60]  Lia S. Campos,et al.  Regulation of neural progenitor proliferation and survival by β1 integrins , 2005, Journal of Cell Science.

[61]  T. Ørntoft,et al.  DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis , 2005, Nature.

[62]  Zang Ai-hua,et al.  Stem Cells,Cancer and Cancer Stem Cells , 2005 .

[63]  Lei Xu,et al.  Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. , 2004, Cancer cell.

[64]  C. Futter,et al.  Farnesyltransferase inhibitors disrupt EGF receptor traffic through modulation of the RhoB GTPase , 2004, Journal of Cell Science.

[65]  Jeffrey M. Rosenstein,et al.  New roles for VEGF in nervous tissue—beyond blood vessels , 2004, Experimental Neurology.

[66]  Daniel H. Geschwind,et al.  Cancerous stem cells can arise from pediatric brain tumors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[67]  Cynthia Hawkins,et al.  Identification of a cancer stem cell in human brain tumors. , 2003, Cancer research.

[68]  N. Ferrara,et al.  The biology of VEGF and its receptors , 2003, Nature Medicine.

[69]  William C Hahn,et al.  Lentivirus-delivered stable gene silencing by RNAi in primary cells. , 2003, RNA.

[70]  Shay Soker,et al.  VEGF165 mediates formation of complexes containing VEGFR‐2 and neuropilin‐1 that enhance VEGF165‐receptor binding , 2002, Journal of cellular biochemistry.

[71]  M. Roberts,et al.  PDGF-regulated rab4-dependent recycling of alphavbeta3 integrin from early endosomes is necessary for cell adhesion and spreading. , 2001, Current biology : CB.

[72]  F. L. Roudabush,et al.  Down-regulation of vascular endothelial growth factor expression after A(2A) adenosine receptor activation in PC12 pheochromocytoma cells. , 2000, The Journal of pharmacology and experimental therapeutics.

[73]  Y. Okada,et al.  Coexpression of VEGF receptors VEGF-R2 and neuropilin-1 in proliferative diabetic retinopathy. , 2000, Investigative ophthalmology & visual science.

[74]  W. Schmiegel,et al.  Melanoma-associated expression of vascular endothelial growth factor and its receptors FLT-1 and KDR , 1999, Journal of Cancer Research and Clinical Oncology.

[75]  R. Weichselbaum,et al.  Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. , 1999, Cancer research.

[76]  K. Plate,et al.  Up-regulation of flk-1/vascular endothelial growth factor receptor 2 by its ligand in a cerebral slice culture system. , 1997, Cancer research.

[77]  H. Niitani,et al.  [Phase II study]. , 1995, Gan to kagaku ryoho. Cancer & chemotherapy.

[78]  J. Gorski,et al.  PECAM-1 (CD31) cloning and relation to adhesion molecules of the immunoglobulin gene superfamily. , 1990, Science.