Set-Valued Square Integrable Martingales and Stochastic Integral
暂无分享,去创建一个
[1] Christian Hess,et al. On multivalued martingales whose values may be unbounded: martingale selectors and Mosco convergence , 1991 .
[2] H. Frankowska,et al. A stochastic filippov theorem , 1994 .
[3] Nikolaos S. Papageorgiou. On the conditional expectation and convergence properties of random sets , 1995 .
[4] Yukio Ogura,et al. A convergence theorem of fuzzy-valued martingales in the extended Hausdorff metric H[infin] , 2003, Fuzzy Sets Syst..
[5] C. Castaing,et al. Convex analysis and measurable multifunctions , 1977 .
[6] Michał Kisielewicz. Set-valued stochastic intergrals and stochastic inclutions 1 , 1997 .
[7] J. Kim,et al. On Set-Valued Stochastic Integrals , 2003 .
[8] S. Shreve. Stochastic calculus for finance , 2004 .
[9] Shoumei Li,et al. ON THE SOLUTIONS OF SET-VALUED STOCHASTIC DIFFERENTIAL EQUATIONS IN M-TYPE 2 BANACH SPACES , 2009 .
[10] Yukio Ogura,et al. Convergence of set-valued and fuzzy-valued martingales , 1999, Fuzzy Sets Syst..
[11] R. Aumann. INTEGRALS OF SET-VALUED FUNCTIONS , 1965 .
[12] Dinh Quang Luu. Applications of set-valued Radon-Nikodym theorems to convergence of multivalued $L^1$-amarts. , 1984 .
[13] J. Kim,et al. Stochastic Integrals of Set-Valued Processes and Fuzzy Processes , 1999 .
[14] B. Øksendal. Stochastic Differential Equations , 1985 .
[15] Nikolaos S. Papageorgiou. On the theory of Banach space valued multifunctions. 1. Integration and conditional expectation , 1985 .
[16] Yukio Ogura,et al. Convergence of set valued sub- and supermartingales in the Kuratowski-Mosco sense , 1998 .
[17] Nikolaos S. Papageorgiou. On the theory of Banach space valued multifunctions. 2. Set valued martingales and set valued measures , 1985 .
[18] F. Hiai,et al. Integrals, conditional expectations, and martingales of multivalued functions , 1977 .
[19] N. Ahmed. Nonlinear stochastic differential inclusions on balance space , 1994 .
[20] Shoumei Li,et al. Stochastic integral with respect to set-valued square integrable martingales , 2010 .
[21] Aihong Ren,et al. Representation theorems, set-valued and fuzzy set-valued Ito integral , 2007, Fuzzy Sets Syst..
[22] Shoumei Li,et al. Strong solution of Itô type set-valued stochastic differential equation , 2010 .
[23] Shoumei Li,et al. On set-valued stochastic integrals in an M-type 2 Banach space , 2009 .
[24] Shouchuan Hu,et al. Handbook of multivalued analysis , 1997 .
[25] Sitadri Bagchi. On a. s. convergence of classes of multivalued asymptotic martingales , 1985 .
[26] Zhen Wang,et al. On convergence and closedness of multivalued martingales , 1994 .
[27] Ioannis Karatzas,et al. Lectures on the Mathematics of Finance , 1996 .
[28] Jean-Pierre Aubin,et al. The viability theorem for stochastic differential inclusions 2 , 1998 .
[29] A. Korvin,et al. A convergence theorem for convex set valued supermartingales , 1985 .
[30] Shouchuan Hu,et al. Handbook of Multivalued Analysis: Volume I: Theory , 1997 .
[31] LI Shi-kai. Square Integrable Martingale , 2008 .
[32] Jungang Li,et al. Set-Valued Stochastic Lebesgue Integral And Representation Theorems , 2008, Int. J. Comput. Intell. Syst..
[33] I. Molchanov. Theory of Random Sets , 2005 .
[34] M. Kisielewicz,et al. Weak Compactness of Solution Sets to Stochastic Differential Inclusions with Non-Convex Right-Hand Sides , 2005 .