Test Generation with Inputs, Outputs and Repetitive Quiescence

This paper studies testing based on labelled transition systems, using the assumption that implementations communicate with their environment via inputs and outputs. Such implementations are formalized by restricting the class of transition systems to those systems that can always accept input actions, as in Input/Output Automata. Implementation relations, formalizing the notion of correctness of these implementations with respect to labelled transition system specifications, are defined analogous to the theories of testing equivalence and preorder, and refusal testing. A test generation algorithm is given which is proved to produce a sound and exhaustive test suite from a specification, i.e., a test suite that fully characterizes the set of correct implementations.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  C. A. R. Hoare,et al.  Communicating sequential processes , 1978, CACM.

[3]  Rocco De Nicola,et al.  Testing Equivalences for Processes , 1984, Theor. Comput. Sci..

[4]  Jan A. Bergstra,et al.  Algebra of Communicating Processes with Abstraction , 1985, Theor. Comput. Sci..

[5]  Samson Abramsky,et al.  Observation Equivalence as a Testing Equivalence , 1987, Theor. Comput. Sci..

[6]  Iain Phillips,et al.  Refusal Testing , 1986, Theoretical Computer Science.

[7]  Rom Langerak A Testing Theory for LOTOS using Deadlock Detection , 1989, PSTV.

[8]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[9]  Nancy A. Lynch,et al.  An introduction to input/output automata , 1989 .

[10]  Clazien D. Wezeman The CO-OP Method for Compositional Derivation of Conformance Testers , 1989, PSTV.

[11]  David H. Pitt,et al.  The Derivation of Conformance Tests from LOTOS Specifications , 1990, IEEE Trans. Software Eng..

[12]  R. J. vanGlabbeek The linear time - branching time spectrum , 1990 .

[13]  Frits W. Vaandrager,et al.  On the relationship between process algebra and input/output automata , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[14]  Gilles Bernot,et al.  Testing Against Formal Specifications: A Theoretical View , 1991, TAPSOFT, Vol.2.

[15]  M. Ümit Uyar,et al.  Finite State Machine Based Formal Methods in Protocol Conformance Testing: From Theory to Implementation , 1991, Comput. Networks ISDN Syst..

[16]  Guy Leduc,et al.  A Framework Based on Implementation Relations for Implementing LOTOS Specifications , 1992, Comput. Networks ISDN Syst..

[17]  K. K. Sandhu,et al.  Specification and description language (SDL) , 1992 .

[18]  Jan Tretmans,et al.  A Queue Model Relating Synchronous and Asynchronous Communication , 1992, PSTV.

[19]  Jan Tretmans,et al.  A Formal Approach to Conformance Testing , 1993, Protocol Test Systems.

[20]  R. V. Glabbeek The Linear Time - Branching Time Spectrum II: The Semantics of Sequential Systems with Silent Moves , 1993 .

[21]  Rob J. van Glabbeek,et al.  The Linear Time - Branching Time Spectrum II , 1993, CONCUR.

[22]  Marc Phalippou Relations d'implantation et hypothèses de test sur des automates à entrées et sorties , 1994 .

[23]  Giuseppe Scollo,et al.  Lotos specifications, their implementations and their tests , 1995 .

[24]  David Lee,et al.  Testing Finite State Machines: Fault Detection , 1995, J. Comput. Syst. Sci..

[25]  Rocco De Nicola,et al.  A Process Algebraic View of Input/Output Automata , 1995, Theor. Comput. Sci..

[26]  Jan Tretmans,et al.  Test Generation with Inputs, Outputs, and Quiescence , 1996, TACAS.

[27]  A. W. Heerink,et al.  Testing theory in practice: a simple experiment , 1996 .

[28]  Roberto Segala,et al.  Quiescence, Fairness, Testing, and the Notion of Implementation , 1997, Inf. Comput..