Solar cell efficiency tables (version 37)

ABSTRACT Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells andmodulesarepresented.GuidelinesforinclusionofresultsintothesetablesareoutlinedandnewentriessinceJune2010arereviewed. Copyright # 2010 John Wiley & Sons, Ltd. KEYWORDSsolar cell efficiency; photovoltaic efficiency; energy conversion efficiency*CorrespondenceMartin A. Green, ARC Photovoltaics Centre of Excellence, University of New South Wales, Sydney 2052, Australia.E-mail: m.green@unsw.edu.auReceived 12 October 2010 1. INTRODUCTION Since January 1993, ‘Progress in Photovoltaics’ haspublished six monthly listings of the highest confirmedefficiencies for a range of photovoltaic cell and moduletechnologies [1–3]. By providing guidelines for theinclusion of results into these tables, this not only providesan authoritative summary of the current state of the art butalso encourages researchers to seek independent confir-mation of results and to report results on a standardisedbasis. In a recent version of these tables (Version 33) [2],results were updated to the new internationally acceptedreferencespectrum(IEC60904–3,Ed.2,2008),wherethiswas possible.Themostimportantcriterionforinclusionofresultsintothe tables is that they must have been measured by arecognised test centre listed elsewhere [1]. A distinction ismade between three different eligible areas: total area;aperture area and designated illumination area [1]. ‘Activearea’ efficiencies are not included. There are also certainminimum values of the area sought for the different devicetypes (above 0.05cm

[1]  Carlos Algora,et al.  A 32.6% efficient lattice-matched dual-junction solar cell working at 1000 suns , 2009 .

[2]  S. Glunz,et al.  SHORT COMMUNICATION: ACCELERATED PUBLICATION: Multicrystalline silicon solar cells exceeding 20% efficiency , 2004 .

[3]  Johannes Meier,et al.  High-Efficiency Amorphous Silicon Devices on LPCVD-ZnO TCO Prepared in Industrial KAI TM-M R&D Reactor , 2009 .

[4]  M. Green,et al.  20 000 PERL silicon cells for the ‘1996 World Solar Challenge’ solar car race , 1997 .

[5]  Ewan D. Dunlop,et al.  A luminescent solar concentrator with 7.1% power conversion efficiency , 2008 .

[6]  Liyuan Han,et al.  High Efficiency of Dye-Sensitized Solar Cell and Module , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[7]  Hiroaki Morikawa,et al.  Honeycomb-Structured Multi-Crystalline Silicon Solar Cells With 18.6% Efficiency Via Industrially Applicable Laser Process , 2008 .

[8]  Adam Huang,et al.  Characterization of 1st Generation High-Strain Elastomer MEMS Sensors for Morphing Aircraft Applications , 2007 .

[9]  D. L. King,et al.  Solar cell efficiency tables (version 22) , 1996, Renewable Energy.

[10]  E. Mopas,et al.  Large area Apollo(R) module performance and reliability , 2000, Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference - 2000 (Cat. No.00CH37036).

[11]  Kenji Yamamoto,et al.  High efficiency thin film silicon hybrid solar cell module on 1 m/sup 2/-class large area substrate , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[12]  M. Green,et al.  19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells , 1998 .

[13]  I. Repins,et al.  19·9%‐efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor , 2008 .

[14]  H. Sakata,et al.  Sanyo's Challenges to the Development of High-efficiency HIT Solar Cells and the Expansion of HIT Business , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[15]  W. Warta,et al.  Solar cell efficiency tables (version 33) , 2009 .

[16]  Paul A. Basore,et al.  Pilot production of thin-film crystalline silicon on glass modules , 2002, Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002..

[17]  Martin A. Green,et al.  Large area, concentrator buried contact solar cells , 1995 .

[18]  F. Krebs,et al.  Stability/degradation of polymer solar cells , 2008 .

[19]  Philip Chiu,et al.  InGaP/GaAs/InGaAs triple junction concentrators using bi-facial epigrowth , 2010, Optics + Photonics for Sustainable Energy.

[20]  Kim W. Mitchell,et al.  Single and tandem junction CuInSe/sub 2/ cell and module technology , 1988, Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference.

[21]  Ralf B. Bergmann,et al.  Advances in monocrystalline Si thin film solar cells by layer transfer , 2002 .

[22]  Kenji Yamamoto,et al.  Thin Film Poly-Si Solar Cell on Glass Substrate Fabricated at Low Temperature , 1998 .

[23]  Kenji Yamamoto,et al.  Thin-film poly-Si solar cells on glass substrate fabricated at low temperature , 1999 .

[24]  K. Emery,et al.  Proposed reference irradiance spectra for solar energy systems testing , 2002 .

[25]  S. Guha,et al.  Status of nc-Si:H Solar Cells at United Solar and Roadmap for Manufacturing a-Si:H and nc-Si:H Based Solar Panels , 2007 .

[26]  D. Pier,et al.  SINGLE AND TANDEM JUNCTION CuInSe2 CELL AND MODULE TECHNOLOGY , 1988 .

[27]  W. Warta,et al.  Solar cell efficiency tables (version 36) , 2010 .

[28]  R. J. Schwartz,et al.  Compact spectrum splitting photovoltaic module with high efficiency , 2011 .

[29]  C. J. Keavney,et al.  Emitter structures in MOCVD InP solar cells , 1990, IEEE Conference on Photovoltaic Specialists.

[30]  D. C. Law,et al.  Band-Gap-Engineered Architectures for High-Efficiency Multijunction Concentrator Solar Cells , 2009 .

[31]  H. Field,et al.  18.2% (AM1.5) efficient GaAs solar cell on optical-grade polycrystalline Ge substrate , 1996, Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996.

[32]  Subhendu Guha,et al.  Progress in triple-junction amorphous silicon-based alloy solar cells and modules using hydrogen dilution , 1994, Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC).

[33]  Rommel Noufi,et al.  Characterization of 19.9%-efficient CIGS absorbers , 2008, 2008 33rd IEEE Photovoltaic Specialists Conference.

[34]  M. Green,et al.  24·5% Efficiency silicon PERT cells on MCZ substrates and 24·7% efficiency PERL cells on FZ substrates , 1999 .

[35]  Philip Chiu,et al.  InGaP/GaAs/InGaAs 41% concentrator cells using bi-facial epigrowth , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.