Resolution-enhanced quantum imaging by centroid estimation of biphotons

The spatial resolution of an optical system is limited by diffraction. Various schemes have been proposed to achieve resolution enhancement by employing either a scanning source/detector configuration or a two-photon response of the object. Here, we experimentally demonstrate a full-field resolution-enhancing scheme, based on the centroid estimation of spatially quantum-correlated biphotons. Our standard-quantum-limited scheme is able to image a general non-fluorescing object, using low-energy and low-intensity infrared illumination (i.e., with <0.001 photon per pixel per frame at 710 nm), achieving 41% of the theoretically available resolution enhancement. Images of real-world objects are shown for visual comparison, in which the classically bound resolution is surpassed using our technically straightforward quantum-imaging scheme.

[1]  Rory R. Duncan,et al.  A $256\times256$ , 100-kfps, 61% Fill-Factor SPAD Image Sensor for Time-Resolved Microscopy Applications , 2018, IEEE Transactions on Electron Devices.

[2]  Matteo Perenzoni,et al.  Super-resolution quantum imaging at the Heisenberg limit , 2017, Optica.

[3]  Guoquan Zhang,et al.  Heisenberg-resolution imaging through a phase-controlled screen. , 2017, Optics express.

[4]  G. Hammond,et al.  Sub-shot-noise shadow sensing with quantum correlations. , 2017, Optics express.

[5]  Yaron Silberberg,et al.  Quantum correlation enhanced super-resolution localization microscopy enabled by a fibre bundle camera , 2016, Nature Communications.

[6]  G Brida,et al.  Absolute calibration of an EMCCD camera by quantum correlation, linking photon counting to the analog regime. , 2016, Optics letters.

[7]  Marco Genovese,et al.  Real applications of quantum imaging , 2016, 1601.06066.

[8]  F. Devaux,et al.  Einstein-Podolsky-Rosen paradox in single pairs of images. , 2015, Optics express.

[9]  J. Xiong,et al.  Experimental observation of sub-Rayleigh quantum imaging with a two-photon entangled source , 2015 .

[10]  John C. Howell,et al.  Introduction to the transverse spatial correlations in spontaneous parametric down-conversion through the biphoton birth zone , 2015, 1502.06996.

[11]  A. Migdall,et al.  Direct measurement of sub-wavelength interference using thermal light and photon-number-resolved detection , 2014 .

[12]  Robert W. Boyd,et al.  Imaging with a small number of photons , 2014, Nature Communications.

[13]  P Olivero,et al.  Beating the Abbe diffraction limit in confocal microscopy via nonclassical photon statistics. , 2014, Physical review letters.

[14]  Aephraim M. Steinberg,et al.  Scalable spatial super-resolution using entangled photons , 2013, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[15]  Dan Oron,et al.  Superresolution microscopy with quantum emitters. , 2013, Nano letters.

[16]  F. Izdebski Quantum correlations measured with multi-pixel detectors , 2013 .

[17]  Giuliano Scarcelli,et al.  Sub-Rayleigh imaging via speckle illumination. , 2013, Optics letters.

[18]  Guang-Can Guo,et al.  Quantum statistical imaging of particles without restriction of the diffraction limit. , 2012, Physical review letters.

[19]  Dan Oron,et al.  Improved resolution in fluorescence microscopy using quantum correlations , 2012 .

[20]  Jan P. Allebach,et al.  Measuring the modulation transfer function of image capture devices: what do the numbers really mean? , 2012, Electronic Imaging.

[21]  G. Buller,et al.  Imaging high-dimensional spatial entanglement with a camera , 2012, Nature Communications.

[22]  Robert W Boyd,et al.  Quantum spatial superresolution by optical centroid measurements. , 2011, Physical review letters.

[23]  Dan Oron,et al.  Fluorescence antibunching microscopy , 2011, BiOS.

[24]  X. Zhuang,et al.  Breaking the Diffraction Barrier: Super-Resolution Imaging of Cells , 2010, Cell.

[25]  S. Walborn,et al.  Spatial correlations in parametric down-conversion , 2010, 1010.1236.

[26]  H. Leonhardt,et al.  A guide to super-resolution fluorescence microscopy , 2010, The Journal of cell biology.

[27]  F Guerrieri,et al.  Sub-Rayleigh imaging via N-photon detection , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[28]  G. Brida,et al.  Experimental realization of sub-shot-noise quantum imaging , 2010, 1004.1274.

[29]  R. Sec. XV. On the theory of optical images, with special reference to the microscope , 2009 .

[30]  M. Tsang Quantum imaging beyond the diffraction limit by optical centroid measurements. , 2009, Physical review letters.

[31]  Eric Lantz,et al.  Measurement of sub-shot-noise correlations of spatial fluctuations in the photon-counting regime. , 2008, Physical review letters.

[32]  S. Lloyd,et al.  Sub-Rayleigh-diffraction-bound quantum imaging , 2008, 0804.2875.

[33]  F. Devaux,et al.  Multi-imaging and Bayesian estimation for photon counting with EMCCDs , 2008, 0803.1420.

[34]  Ling-An Wu,et al.  Two-photon interference with true thermal light , 2005, quant-ph/0506056.

[35]  M. Teich,et al.  Wolf equations for two-photon light. , 2005, Physical review letters.

[36]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[37]  C. Mackay,et al.  Photon counting strategies with low-light-level CCDs , 2003, astro-ph/0307305.

[38]  Bahaa E. A. Saleh,et al.  Entangled-photon ellipsometry , 2001, International Commission for Optics.

[39]  Glenn D. Boreman,et al.  Modulation Transfer Function in Optical and Electro-Optical Systems , 2001 .

[40]  Colin P. Williams,et al.  Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit , 1999, Physical review letters.

[41]  Shih,et al.  Optical imaging by means of two-photon quantum entanglement. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[42]  S. Hell,et al.  Ground-state-depletion fluorscence microscopy: A concept for breaking the diffraction resolution limit , 1995 .

[43]  Shih,et al.  Observation of two-photon "ghost" interference and diffraction. , 1995, Physical review letters.

[44]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[45]  David N. Hume,et al.  WHAT DO THE NUMBERS REALLY MEAN , 1985 .

[46]  Hong,et al.  Theory of parametric frequency down conversion of light. , 1985, Physical review. A, General physics.

[47]  D. A. Kleinman,et al.  Theory of Optical Parametric Noise , 1968 .

[48]  E. Abbe Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung , 1873 .

[49]  E. Samei,et al.  A method for measuring the presampled MTF of digital radiographic systems using an edge test device. , 1998, Medical physics.