U-statistics on bipartite exchangeable networks

Bipartite networks with exchangeable nodes can be represented by row-column exchangeable matrices. A quadruplet is a submatrix of size $2 \times 2$. A quadruplet $U$-statistic is the average of a function on a quadruplet over all the quadruplets of a matrix. We prove several asymptotic results for quadruplet $U$-statistics on row-column exchangeable matrices, including a weak convergence result in the general case and a central limit theorem when the matrix is also dissociated. These results are applied to statistical inference in network analysis. We suggest a method to perform parameter estimation, network comparison and motifs count for a particular family of row-column exchangeable network models: the bipartite expected degree distribution (BEDD) models. These applications are illustrated by simulations.

[1]  Peter Orbanz,et al.  Limit theorems for distributions invariant under groups of transformations , 2022, The Annals of Statistics.

[2]  Y. D. Castro,et al.  Three rates of convergence or separation via U-statistics in a dependent framework , 2021, J. Mach. Learn. Res..

[3]  Pierre Latouche,et al.  Motif-based tests for bipartite networks , 2021, 2101.11381.

[4]  Y. D. Castro,et al.  Concentration inequality for U-statistics of order two for uniformly ergodic Markov chains , 2020, Bernoulli.

[5]  Carey E. Priebe,et al.  Testing for Equivalence of Network Distribution Using Subgraph Counts , 2017, Journal of Computational and Graphical Statistics.

[6]  Francesca Ieva,et al.  Comparing methods for comparing networks , 2019, Scientific Reports.

[7]  E. Levina,et al.  Bootstrapping Networks with Latent Space Structure , 2019, 1907.10821.

[8]  Jan-Frederik Mai The infinite extendibility problem for exchangeable real-valued random vectors , 2019, 1907.04054.

[9]  Xavier D'Haultfoeuille,et al.  Empirical process results for exchangeable arrays , 2019, The Annals of Statistics.

[10]  William J. Sutherland,et al.  Motifs in bipartite ecological networks: uncovering indirect interactions , 2018, Oikos.

[11]  W. Dempsey,et al.  Edge Exchangeable Models for Interaction Networks , 2018, Journal of the American Statistical Association.

[12]  Wilfried Thuiller,et al.  Comparing species interaction networks along environmental gradients , 2017, Biological reviews of the Cambridge Philosophical Society.

[13]  A. Rinaldo,et al.  Random networks, graphical models and exchangeability , 2017, 1701.08420.

[14]  Yongtang Shi,et al.  Fifty years of graph matching, network alignment and network comparison , 2016, Inf. Sci..

[15]  Trevor Campbell,et al.  Edge-exchangeable graphs and sparsity , 2016, NIPS.

[16]  Daniel M. Roy,et al.  The Class of Random Graphs Arising from Exchangeable Random Measures , 2015, ArXiv.

[17]  Chiara Orsini,et al.  Quantifying randomness in real networks , 2015, Nature Communications.

[18]  Cosma Rohilla Shalizi,et al.  Geometric Network Comparisons , 2015, UAI.

[19]  Daniel B. Stouffer,et al.  Species’ roles in food webs show fidelity across a highly variable oak forest , 2015 .

[20]  Takis Konstantopoulos,et al.  On the extendibility of finitely exchangeable probability measures , 2015, Transactions of the American Mathematical Society.

[21]  Jan Ramon,et al.  U-statistics on network-structured data with kernels of degree larger than one , 2014, SSDM@ECML/PKDD.

[22]  Djalil Chafaï,et al.  Circular law for random matrices with exchangeable entries , 2014, Random Struct. Algorithms.

[23]  Daniel M. Roy,et al.  Bayesian Models of Graphs, Arrays and Other Exchangeable Random Structures , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  P. Bickel,et al.  Subsampling bootstrap of count features of networks , 2013, 1312.2645.

[25]  P. Bickel,et al.  The method of moments and degree distributions for network models , 2011, 1202.5101.

[26]  M. Reitzner,et al.  Central limit theorems for $U$-statistics of Poisson point processes , 2011, 1104.1039.

[27]  Bal'azs Szegedy,et al.  Limits of compact decorated graphs , 2010, 1010.5155.

[28]  G. Reinert,et al.  Random subgraph counts and U-statistics: multivariate normal approximation via exchangeable pairs and embedding , 2010, Journal of Applied Probability.

[29]  P. Bickel,et al.  A nonparametric view of network models and Newman–Girvan and other modularities , 2009, Proceedings of the National Academy of Sciences.

[30]  Edward R. Scheinerman,et al.  Random Dot Product Graph Models for Social Networks , 2007, WAW.

[31]  Daniel B. Stouffer,et al.  Evidence for the existence of a robust pattern of prey selection in food webs , 2007, Proceedings of the Royal Society B: Biological Sciences.

[32]  Franck Picard,et al.  Assessing the Exceptionality of Network Motifs , 2007, J. Comput. Biol..

[33]  Teresa M. Przytycka,et al.  An Important Connection Between Network Motifs and Parsimony Models , 2006, RECOMB.

[34]  Jordi Bascompte,et al.  SIMPLE TROPHIC MODULES FOR COMPLEX FOOD WEBS , 2005 .

[35]  P. Bearman,et al.  Chains of Affection: The Structure of Adolescent Romantic and Sexual Networks1 , 2004, American Journal of Sociology.

[36]  Igor Jurisica,et al.  Modeling interactome: scale-free or geometric? , 2004, Bioinform..

[37]  A. Vespignani,et al.  The architecture of complex weighted networks. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Gérard Govaert,et al.  Clustering with block mixture models , 2003, Pattern Recognit..

[39]  F. Chung,et al.  The average distances in random graphs with given expected degrees , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Peter D. Hoff,et al.  Latent Space Approaches to Social Network Analysis , 2002 .

[41]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[42]  Dudley Stark,et al.  Compound Poisson approximations of subgraph counts in random graphs , 2001, Random Struct. Algorithms.

[43]  Olav Kallenberg,et al.  Multivariate Sampling and the Estimation Problem for Exchangeable Arrays , 1999 .

[44]  E. Lindenstrauss Pointwise theorems for amenable groups , 1999 .

[45]  E. Giné,et al.  On the Bootstrap of $U$ and $V$ Statistics , 1992 .

[46]  Stefun D. Leigh U-Statistics Theory and Practice , 1992 .

[47]  Lincheng Zhao,et al.  Normal approximation for finite-populationU-statistics , 1990 .

[48]  R. Huggins,et al.  A law of the iterated logarithm for weakly exchangeable arrays , 1985, Mathematical Proceedings of the Cambridge Philosophical Society.

[49]  W. V. Zwet,et al.  A Berry-Esseen bound for symmetric statistics , 1984 .

[50]  Kathryn B. Laskey,et al.  Stochastic blockmodels: First steps , 1983 .

[51]  D. Aldous Representations for partially exchangeable arrays of random variables , 1981 .

[52]  G. Eagleson,et al.  Limit theorems for weakly exchangeable arrays , 1978, Mathematical Proceedings of the Cambridge Philosophical Society.

[53]  Pranab Kumar Sen,et al.  On the Properties of U-Statistics When the Observations are not Independent , 1963 .

[54]  Pranab Kumar Sen,et al.  On the Properties of U-Statistics when the Observations are not Independent , 1963 .

[55]  W. Hoeffding A Class of Statistics with Asymptotically Normal Distribution , 1948 .

[56]  P. Halmos The Theory of Unbiased Estimation , 1946 .

[57]  Daniel M. Roy,et al.  Bootstrap estimators for the tail-index and for the count statistics of graphex processes , 2021, Electronic Journal of Statistics.

[58]  Sinead Williamson,et al.  Nonparametric Network Models for Link Prediction , 2016, J. Mach. Learn. Res..

[59]  Ove Frank,et al.  http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained , 2007 .

[60]  J. Norris Appendix: probability and measure , 1997 .

[61]  P. Diaconis,et al.  Graph limits and exchangeable random graphs , 2007, 0712.2749.

[62]  C. Borgs,et al.  GRAPH LIMITS AND EXCHANGEABLE RANDOM , 2007 .

[63]  Mamta Mittal An Introduction To Probability Theory And Its Application , 2003 .

[64]  T. Snijders,et al.  Estimation and Prediction for Stochastic Blockmodels for Graphs with Latent Block Structure , 1997 .

[65]  H. Rubin,et al.  Asymptotic Distribution of Symmetric Statistics , 1980 .

[66]  I. Kovalenko An introduction to probability theory and its applications. Vol. II , 1968 .