Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: A review of current and expected applications in aerospace sciences

Abstract Carbon nanotubes have instigated the interest of many different scientific fields since their authenticated introduction, more than two decades ago. Particularly in aerospace applications, the potential implementations of these advanced materials have been predicted to have a large impact on future aircraft and space vehicles, mainly due to their distinct features, which include superior mechanical, thermal and electrical properties. This article provides the very first consolidated review of the imminent prospects of utilizing carbon nanotubes and nanoparticles in aerospace sciences, based on their recent implementations and predicted future applications. Explicitly, expected carbon nanotube employment in aeronautics and astronautics are identified for commercial aircraft, military aircraft, rotorcraft, unmanned aerial vehicles, satellites, and space launch vehicles. Attention is devoted to future utilization of carbon nanotubes, which may comprise hydrogen storage encapsulation, composite material implementation, lightning protection for aircraft, aircraft icing mitigation, reduced weight of airframes/satellites, and alleviation of challenges related to future space launch. This study further sheds light onto recent actualized implementations of carbon nanotubes in aerospace applications, as well as current and prospective challenges related to their usage in aerospace sciences, encompassing health and safety hazards, large scale manufacturing, achievement of optimum properties, recycling, and environmental impacts.

[1]  Jaycee H. Chung,et al.  Self-sensing of damage in carbon fiber polymer-matrix composite by measurement of the electrical resistance or potential away from the damaged region , 2005 .

[2]  H. Peng,et al.  Carbon nanotube based composites film heater for de-icing application , 2010 .

[3]  Mehdi Hojjati,et al.  Review article: Polymer-matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview , 2006 .

[4]  Dusan A. Pejakovic,et al.  Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst , 2004 .

[5]  Tsu-Wei Chou,et al.  Nanocomposites in context , 2005 .

[6]  W. Cai,et al.  Ultrastrong, Stiff and Multifunctional Carbon Nanotube Composites , 2013 .

[7]  Mool C. Gupta,et al.  A comparative study of EMI shielding properties of carbon nanofiber and multi-walled carbon nanotube filled polymer composites. , 2005, Journal of nanoscience and nanotechnology.

[8]  B. Wardle,et al.  Interlaminar and intralaminar reinforcement of composite laminates with aligned carbon nanotubes , 2010 .

[9]  James A. Brass,et al.  Imaging from an unmanned aerial vehicle: agricultural surveillance and decision support , 2004 .

[10]  Kari Peräjärvi,et al.  Radiation surveillance using an unmanned aerial vehicle. , 2009, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[11]  H. Krug,et al.  Oops they did it again! Carbon nanotubes hoax scientists in viability assays. , 2006, Nano letters.

[12]  L. Cena,et al.  Characterization and Control of Airborne Particles Emitted During Production of Epoxy/Carbon Nanotube Nanocomposites , 2011, Journal of occupational and environmental hygiene.

[13]  Jie Han,et al.  Energetics and geometries of carbon nanoconic tips , 1998 .

[14]  Denis Estublier,et al.  The SMART-1 Electric Propulsion Subsystem around the Moon: In Flight Experience , 2005 .

[15]  S. Fiorito Carbon Nanotubes: Angels or Demons? , 2008 .

[16]  Brian L. Wardle,et al.  Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown In Situ , 2008 .

[17]  Yanju Liu,et al.  Study of carbon nanotubes/short carbon fiber nanocomposites for lightning strike protection , 2010, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[18]  Jerome C. Glenn,et al.  NANOTECHNOLOGY: FUTURE MILITARY ENVIRONMENTAL HEALTH CONSIDERATIONS , 2006 .

[19]  H. Dai,et al.  Self-oriented regular arrays of carbon nanotubes and their field emission properties , 1999, Science.

[20]  G. Schmidt,et al.  Properties of polymer–nanoparticle composites , 2003 .

[21]  V. Kostopoulos,et al.  On the Use of Electrical Conductivity for the Assessment of Damage in Carbon Nanotubes Enhanced Aerospace Composites , 2013 .

[22]  D. Bethune,et al.  Storage of hydrogen in single-walled carbon nanotubes , 1997, Nature.

[23]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[24]  Meyya Meyyappan,et al.  Carbon Nanotubes: Science and Applications , 2007 .

[25]  Wahyu Setyawan,et al.  Nanotube electronics: Large-scale assembly of carbon nanotubes , 2003, Nature.

[26]  Uttandaraman Sundararaj,et al.  A review of vapor grown carbon nanofiber/polymer conductive composites , 2009 .

[27]  A. Bagchi,et al.  On the effective thermal conductivity of carbon nanotube reinforced polymer composites , 2006 .

[28]  Dries Verstraete,et al.  Long range transport aircraft using hydrogen fuel , 2013 .

[29]  Terrence A. Weisshaar,et al.  Morphing Aircraft Systems: Historical Perspectives and Future Challenges , 2013 .

[30]  Jeunghee Park,et al.  Growth model of bamboo-shaped carbon nanotubes by thermal chemical vapor deposition , 2000 .

[31]  Ice adhesion to pristine and eroded polymer matrix composites reinforced with carbon nanotubes for potential usage on future aircraft , 2013 .

[32]  Brendan M. Quine,et al.  A free-standing space elevator structure: A practical alternative to the space tether , 2009 .

[33]  P. Lambin,et al.  Carbon Nanotubes : from basic research to nanotechnology , 2006 .

[34]  Qing Zhang Carbon nanotubes and their applications , 2012 .

[35]  D. C. Jenn,et al.  Radar and laser cross section engineering , 2005 .

[36]  Anuradha M. Annaswamy,et al.  Adaptive configuration control of multiple UAVs , 2013 .

[37]  Tianmiao Wang,et al.  A small unmanned polar research aerial vehicle based on the composite control method , 2011 .

[38]  Pat Duggins Final Countdown: NASA and the End of the Space Shuttle Program , 2007 .

[39]  B. C. Edwards,et al.  DESIGN AND DEPLOYMENT OF A SPACE ELEVATOR , 2000 .

[40]  R. Lawrence,et al.  Electromagnetic interference shielding characteristics of carbon nanofiber-polymer composites. , 2007, Journal of Nanoscience and Nanotechnology.

[41]  Emmanuel Kymakis,et al.  Single-wall carbon nanotube/conjugated polymer photovoltaic devices , 2002 .

[42]  Amir S. Gohardani,et al.  Ceramic engine considerations for future aerospace propulsion , 2012 .

[43]  W. D. de Heer,et al.  A Carbon Nanotube Field-Emission Electron Source , 1995, Science.

[44]  Paul Czysz,et al.  Advanced Technology and Breakthrough Physics for 2025 and 2050 Military Aerospace Vehicles , 2006 .

[45]  W. Stark,et al.  Large-scale production of carbon-coated copper nanoparticles for sensor applications , 2006, Nanotechnology.

[46]  Cees Bil,et al.  Design of a Fire-Fighting Unmanned Air Vehicle , 2012 .

[47]  Yiu-Wing Mai,et al.  Dispersion and alignment of carbon nanotubes in polymer matrix: A review , 2005 .

[48]  Mark D. Hoover,et al.  Identification and Characterization of Potential Sources of Worker Exposure to Carbon Nanofibers During Polymer Composite Laboratory Operations , 2007, Journal of occupational and environmental hygiene.

[49]  Jinsong Leng,et al.  Self-heating fiber reinforced polymer composite using meso/macropore carbon nanotube paper and its application in deicing , 2014 .

[50]  Iijima,et al.  Growth model for carbon nanotubes. , 1992, Physical review letters.

[51]  Marc Monthioux,et al.  Who should be given the credit for the discovery of carbon nanotubes , 2006 .

[52]  M. Prato,et al.  Can Carbon Nanotubes be Considered Useful Tools for Biological Applications? , 2003 .

[53]  S. Hoa,et al.  Method for reducing contact resistivity of carbon nanotube-containing epoxy adhesives for aerospace applications , 2011 .

[54]  M. Meo,et al.  Prediction of Young's modulus of single wall carbon nanotubes by molecular-mechanics based finite element modelling , 2006 .

[55]  Roham Rafiee,et al.  Simulation of impact and post-impact behavior of carbon nanotube reinforced polymer using multi-scale finite element modeling , 2012 .

[56]  Fadri Gottschalk,et al.  Studying the potential release of carbon nanotubes throughout the application life cycle , 2008 .

[57]  B. K. Gupta,et al.  High permittivity polyaniline-barium titanate nanocomposites with excellent electromagnetic interference shielding response. , 2013, Nanoscale.

[58]  Chung King Law,et al.  Fuel Options for Next-Generation Chemical Propulsion , 2012 .

[59]  David Markham,et al.  Shielding: quantifying the shielding requirements for portable electronic design and providing new solutions by using a combination of materials and design , 1999 .

[60]  Monish D. Tandale,et al.  A Reinforcement Learning - Adaptive Control Architecture for Morphing , 2004, J. Aerosp. Comput. Inf. Commun..

[61]  M. Meo,et al.  A molecular-mechanics based finite element model for strength prediction of single wall carbon nanotubes , 2007 .

[62]  C. R. Martin,et al.  Carbon nanotubule membranes for electrochemical energy storage and production , 1998, Nature.

[63]  Karl I. Jacob,et al.  Experimental trends in polymer nanocomposites—a review , 2005 .

[64]  Riti Singh,et al.  Challenges of future aircraft propulsion: A review of distributed propulsion technology and its potential application for the all electric commercial aircraft , 2011 .

[65]  Omid Gohardani,et al.  The Exploration of Icephobic Materials and Their Future Prospects in Aircraft Icing Applications , 2012 .

[66]  A. Oberlin,et al.  Filamentous growth of carbon through benzene decomposition , 1976 .

[67]  Peter A. Swan,et al.  Why we need a space elevator , 2006 .

[68]  K. Watson,et al.  Polymer-Single Wall Carbon Nanotube Composites for Potential Spacecraft Applications , 2001 .

[69]  Paraskevas Papanikos,et al.  Finite element modeling of single-walled carbon nanotubes , 2005 .

[70]  M. Endo,et al.  Nanotechnology: ‘Buckypaper’ from coaxial nanotubes , 2005, Nature.

[71]  Tinh Nguyen,et al.  Potential release pathways, environmental fate, and ecological risks of carbon nanotubes. , 2011, Environmental science & technology.

[72]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[73]  E. Barrera,et al.  Hypervelocity Impact Experiments on Epoxy/Ultra-high Molecular Weight Polyethylene Fiber Composites Reinforced with Single-walled Carbon Nanotubes☆ , 2013 .

[74]  Brian L. Wardle,et al.  Long Carbon Nanotubes Grown on the Surface of Fibers for Hybrid Composites , 2008 .

[75]  Anders Larsson,et al.  Voltage drop along a lightning channel during strikes to aircraft , 2005 .

[76]  Ali Javey,et al.  Carbon nanotube electronics , 2006, 19th International Conference on VLSI Design held jointly with 5th International Conference on Embedded Systems Design (VLSID'06).

[77]  Mark S. Avnet,et al.  The space elevator in the context of current space exploration policy , 2006 .

[78]  David Williamson,et al.  Multiple liquid impacts on polymeric matrix composites reinforced with carbon nanotubes , 2012 .

[79]  Junichiro Kawaguchi,et al.  Powered Flight of HAYABUSA in Deep Space , 2006 .

[80]  R. Baughman,et al.  Carbon Nanotubes: Present and Future Commercial Applications , 2013, Science.

[81]  Mark J. Schulz,et al.  Development of Lightweight Sustainable Electric Motors , 2014 .

[82]  V. Shanov,et al.  Nanotube Superfiber Materials : Changing Engineering Design , 2013 .

[83]  Derk Brouwer,et al.  Potential release scenarios for carbon nanotubes used in composites. , 2013, Environment international.

[84]  R. Gorga,et al.  Toughness enhancements in poly(methyl methacrylate) by addition of oriented multiwall carbon nanotubes , 2004 .

[85]  Darrick J. Williams,et al.  Recyclable and electrically conducting carbon nanotube composite films. , 2010, Nanoscale.

[86]  Craig A. Poland,et al.  Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. , 2008, Nature nanotechnology.

[87]  D. Lee,et al.  Composite sandwich constructions for absorbing the electromagnetic waves , 2009 .

[88]  D. Chung Electromagnetic interference shielding effectiveness of carbon materials , 2001 .

[89]  Andrew D. Ketsdever,et al.  Overview of Advanced Concepts for Space Access , 2010 .

[90]  Jeffery A. Steevens,et al.  Potential for Occupational Exposure to Engineered Carbon-Based Nanomaterials in Environmental Laboratory Studies , 2009, Environmental health perspectives.

[91]  DYNAMIC AND STATIC WETTABILITY OF ADVANCED MATERIALS USED IN AERONAUTICAL APPLICATIONS , 2013 .

[92]  Sai-Ming Li,et al.  Forest fire monitoring with multiple small UAVs , 2005, Proceedings of the 2005, American Control Conference, 2005..

[93]  P. T. Lillehei,et al.  Design and Characterization of Carbon Nanotube Nanocomposites , 2003 .

[94]  J. Nagy,et al.  Large scale production of short functionalized carbon nanotubes , 2002 .

[95]  Nicola Pugno,et al.  Space elevator: out of order? , 2007 .

[96]  Timothy D Hall,et al.  Biennial Research and Technology Development Report , 2009 .

[97]  Thomas A. Campbell,et al.  3D printing of multifunctional nanocomposites , 2013 .

[98]  Richard Van Noorden Chemistry: The trials of new carbon , 2011, Nature.

[99]  Z. Sadeghian Large-scale Production of multi-walled Carbon Nanotubes by low-cost Spray Pyrolysis of Hexane , 2009 .

[100]  O. Gohardani The influence of erosion and wear on the accretion and adhesion of ice for nano-reinforced polymetric composites used in aeronautics , 2011 .

[101]  Jerome Pearson,et al.  The orbital tower: A spacecraft launcher using the Earth's rotational energy , 1975 .

[102]  Richard H. Friend,et al.  Composites of Carbon Nanotubes and Conjugated Polymers for Photovoltaic Devices , 1999 .

[103]  S. Jana,et al.  Dispersion of nanofillers in high performance polymers using reactive solvents as processing aids , 2001 .

[104]  Y. Saito,et al.  Field emission from carbon nanotubes and its application to electron sources , 2000 .

[105]  Mark A. Miller,et al.  Damage resistance and tolerance of carbon/epoxy composite coupons subjected to simulated lightning strike , 2009 .

[106]  Giuseppe Mingione,et al.  On the problem of icing for modern civil aircraft , 2001 .

[107]  Roy Clarke,et al.  MEMS Gate Structures for Electric Propulsion Applications , 2006 .

[108]  Antonella Piozzi,et al.  Wet adhesion of buckypaper produced from oxidized multiwalled carbon nanotubes on soft animal tissue. , 2013, ACS applied materials & interfaces.

[109]  D. Young,et al.  An induction furnace for operations up to 3400° C using well oriented graphite , 1962 .

[110]  Xiongqing Yu,et al.  Aerodynamic/Stealthy/Structural Multidisciplinary Design Optimization of Unmanned Combat Air Vehicle , 2009 .

[111]  Alan M. Cassell,et al.  Controlled Chemical Routes to Nanotube Architectures, Physics, and Devices , 1999 .

[112]  C. Macosko,et al.  Graphene/Polymer Nanocomposites , 2010 .

[113]  Thomas M. Liu,et al.  Nanoparticle Electric Propulsion for Space Exploration , 2007 .

[114]  Droplet Interaction And Dynamic Wettability OfAdvanced Materials Used In Aeronautics , 2012 .

[115]  Luboš Perek Space Elevator: Stability , 2006 .

[116]  Wiker Sf The human/robot interface. , 1993 .

[117]  Bhanu Pratap Singh,et al.  Effective improvement of the properties of light weight carbon foam by decoration with multi-wall carbon nanotubes , 2013 .

[118]  S Kuukankorpi,et al.  Design of a radiation surveillance unit for an unmanned aerial vehicle. , 2005, Journal of environmental radioactivity.

[119]  David H. Lehman,et al.  Results from the Deep Space 1 technology validation mission , 2000 .

[120]  M. Shaffer,et al.  Fabrication and Characterization of Carbon Nanotube/Poly(vinyl alcohol) Composites , 1999 .

[121]  Chung K. Law,et al.  Dryden Lecture: Fuel Options for Next Generation Chemical Propulsion , 2011 .

[122]  A. Paipetis Stress Induced Changes in the Raman Spectrum of Carbon Nanostructures and Their Composites , 2013 .

[123]  M. Hillert,et al.  The structure of graphite filaments , 1959 .

[124]  C. Xie,et al.  Novel 1–3 metal nanoparticle/polymer composites induced by hybrid external fields , 2006 .

[125]  Xianfeng Zhang,et al.  Multiwalled carbon nanotubes for stray light suppression in space flight instruments , 2010, NanoScience + Engineering.

[126]  Brian L. Wardle,et al.  Joining prepreg composite interfaces with aligned carbon nanotubes , 2008 .

[127]  Georg Guenther,et al.  Structural Design Aspects and Criteria for Military UAV , 2007 .

[128]  Muhammad A. Qidwai,et al.  The design and application of multifunctional structure-battery materials systems , 2005 .

[129]  D.D.L. Chung,et al.  Materials for electromagnetic interference shielding , 2000, Materials Chemistry and Physics.

[130]  Dimitrios J. Giliopoulos,et al.  Chemical Functionalization of Carbon Nanotubes for Dispersion in Epoxy Matrices , 2013 .

[131]  M. S. de Vries,et al.  Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls , 1993, Nature.

[132]  Kevin Wise First Flight of the X-45A Unmanned Combat Air Vehicle (UCAV) , 2003 .

[133]  D.D.L. Chung,et al.  Through-thickness stress sensing of a carbon fiber polymer–matrix composite by electrical resistance measurement , 2007 .

[134]  Y. Lan,et al.  Introduction to Carbon , 2012 .

[135]  M. Dresselhaus,et al.  Introduction to the Important and Exciting Aspects of Carbon-Nanotube Science and Technology , 2007 .

[136]  P. Ajayan,et al.  Multifunctional composites using reinforced laminae with carbon-nanotube forests , 2006, Nature materials.

[137]  Samuel L. Venneri,et al.  Future Aeronautical and Space Systems , 1997 .

[138]  Jun Wu,et al.  Modeling and control approach to a distinctive quadrotor helicopter. , 2014, ISA transactions.

[139]  A. Sebak,et al.  Multiwall Carbon Nanotube–Epoxy Composites With High Shielding Effectiveness for Aeronautic Applications , 2012, IEEE Transactions on Electromagnetic Compatibility.

[140]  Arthur Charles Clarke The Fountains of Paradise , 1979 .

[141]  Charles C. Ryerson,et al.  Army Aircraft Icing , 2002 .

[142]  J. Sarasua,et al.  Influence of the geometrical properties of the carbon nanotubes on the interfacial behavior of epoxy/CNT composites: A molecular modelling approach , 2013 .

[143]  P. Poulin,et al.  Carbon Nanotube Structures with Sensing and Actuating Capabilities , 2013 .

[144]  Timothy W. McLain,et al.  Cooperative forest fire surveillance using a team of small unmanned air vehicles , 2006, Int. J. Syst. Sci..

[145]  Kilian A Engel Lunar transportation scenarios utilising the Space Elevator. , 2005, Acta astronautica.

[146]  D. Therriault,et al.  Lightning strike protection of composites , 2014 .

[147]  Mihail C. Roco,et al.  Nanotechnology Research Directions for Societal Needs in 2020: Retrospective and Outlook , 2011 .

[148]  C. Lieber,et al.  Atomic structure and electronic properties of single-walled carbon nanotubes , 1998, Nature.

[149]  T. C. Theodosiou,et al.  Mechanical and Electrical Response Models of Carbon Nanotubes , 2013 .

[150]  R. Oriňaková,et al.  Recent applications of carbon nanotubes in hydrogen production and storage , 2011 .

[151]  Terrence A. Weisshaar,et al.  Morphing Aircraft Technology - New Shapes for Aircraft Design , 2006 .

[152]  Anna-Maria Rivas McGowan,et al.  Recent results from NASA's morphing project , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[153]  Brian L. Wardle,et al.  Aligned Carbon Nanotube Reinforcement of Aerospace Carbon Fiber Composites: Substructural Strength Evaluation for Aerostructure Applications , 2012 .

[154]  NASA/JSC Carbon Nanotube Project Status , 1999 .

[155]  S. D. Keller,et al.  Carbon Nanotube Yarn and Sheet Antennas , 2014 .

[156]  A. Hart,et al.  Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes , 2009 .

[157]  H. Troger,et al.  On the stability of the track of the space elevator , 2006 .

[158]  Jonathan N. Coleman,et al.  Mechanical Reinforcement of Polymers Using Carbon Nanotubes , 2006 .

[159]  T. Chou,et al.  Advances in the science and technology of carbon nanotubes and their composites: a review , 2001 .

[160]  R. Schledjewski,et al.  Mechanical Dispersion Methods for Carbon Nanotubes in Aerospace Composite Matrix Systems , 2013 .

[161]  H. Dai,et al.  Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[162]  I. Kinloch,et al.  Towards the production of large-scale aligned carbon nanotubes , 2003 .

[163]  Peter J. F. Harris,et al.  Carbon nanotube composites , 2004 .

[164]  C. Bakis,et al.  Multiscale Damping Model for Polymeric Composites Containing Carbon Nanotube Ropes , 2010 .

[165]  William A. Curtin,et al.  Modeling of mechanical damage detection in CFRPs via electrical resistance , 2007 .

[166]  Robert H. Hauge,et al.  Poly(vinyl alcohol)/SWNT Composite Film , 2003 .

[167]  J. Kong,et al.  Characterization and evaluation of nanoparticle release during the synthesis of single-walled and multiwalled carbon nanotubes by chemical vapor deposition. , 2009, Environmental science & technology.

[168]  Structural Damping and Health Monitoring Enhancement via Multifunctional Carbon Nanotube-Based Composites Tailoring , 2011 .

[169]  Guy Norris,et al.  Boeing 787 Dreamliner , 2005 .

[170]  Riichiro Saito,et al.  Physics of carbon nanotubes , 1995 .

[171]  John R. Reynolds,et al.  Transparent, Conductive Carbon Nanotube Films , 2004, Science.

[172]  Bo Tan Nanomechanics: Aeronautics and Aerospace Prospect , 2012 .

[173]  Yafei Zhang,et al.  Continuous and low-cost synthesis of high-quality multi-walled carbon nanotubes by arc discharge in air , 2012 .

[174]  Stephan Roche,et al.  Understanding carbon nanotubes : from basics to applications , 2006 .

[175]  Nicola M. Pugno On the strength of the carbon nanotube-based space elevator cable: from nanomechanics to megamechanics , 2006 .

[176]  J. Justin Gooding,et al.  Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing , 2005 .

[177]  Chunyu Li,et al.  A STRUCTURAL MECHANICS APPROACH FOR THE ANALYSIS OF CARBON NANOTUBES , 2003 .

[178]  J. M. Adams,et al.  Computational modeling and evaluation of the thermal behavior of randomly distributed single-walled carbon nanotube/polymer composites , 2012 .

[179]  Mahmut Faruk Aksit,et al.  Design and construction of a novel quad tilt-wing UAV , 2012 .

[180]  Chun-Gon Kim,et al.  Enhanced durability of silanized multi-walled carbon nanotube/epoxy nanocomposites under simulated low earth orbit space environment , 2013 .

[181]  Ado Jorio,et al.  Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications , 2007 .

[182]  M. Funaki,et al.  Outline of a small unmanned aerial vehicle (Ant-Plane) designed for Antarctic research , 2008 .

[183]  A. Bolonkin Non-rocket space launch and flight , 2006 .

[184]  Jerome Pearson Anchored Lunar Satellites for Cislunar Transportation and Communication 1 , 1979 .

[185]  T. Chou,et al.  On the elastic properties of carbon nanotube-based composites: modelling and characterization , 2003 .

[186]  William A. Curtin,et al.  Damage detection via electrical resistance in CFRP composites under cyclic loading , 2008 .

[187]  N. Barkoula,et al.  Enhanced bonded aircraft repair using nano-modified adhesives , 2012 .

[188]  J A Plumer,et al.  Aircraft Lightning Protection Handbook , 1989 .

[189]  K. Watson,et al.  Polymer and carbon nanotube composites for space applications , 2006 .

[190]  V. Sosounov,et al.  Experimental turbofan using liquid hydrogen and liquid natural gas as fuel , 1990 .

[191]  M. Stolzenburg,et al.  In situ structure characterization of airborne carbon nanofibres by a tandem mobility–mass analysis , 2006, Nanotechnology.

[192]  Hashem Rafii-Tabar,et al.  Computational modelling of thermo-mechanical and transport properties of carbon nanotubes , 2004 .

[193]  Jennifer Fielding,et al.  Carbon nanofiber paper for lightning strike protection of composite materials , 2010 .

[194]  Kevin H. Dunn,et al.  Aerosol Monitoring during Carbon Nanofiber Production: Mobile Direct-Reading Sampling , 2010, The Annals of occupational hygiene.

[195]  J. Kanno,et al.  Induction of mesothelioma in p53+/- mouse by intraperitoneal application of multi-wall carbon nanotube. , 2008, The Journal of toxicological sciences.

[196]  Arun K. Sehra,et al.  Revolutionary Propulsion Systems for 21st Century Aviation , 2003 .

[197]  G. R. Liu,et al.  I. Computational methods , 2006, Radiative Neutron Capture.

[198]  Gwi-Nam Bae,et al.  Monitoring Multiwalled Carbon Nanotube Exposure in Carbon Nanotube Research Facility , 2008 .

[199]  M. Pleasant,et al.  THE LUNAR SPACE ELEVATOR , 2004 .

[200]  P. Poulin,et al.  Improved structure and properties of single-wall carbon nanotube spun fibers , 2002 .

[201]  M. Ghasemi-Nejhad,et al.  Analytical and numerical techniques to predict carbon nanotubes properties , 2006 .

[202]  M. Schubauer-Berigan,et al.  Occupational exposure assessment in carbon nanotube and nanofiber primary and secondary manufacturers. , 2012, The Annals of occupational hygiene.

[203]  Anna-Maria Rivas McGowan,et al.  NASA's Morphing Project Research Summaries in Fiscal Year 2002 , 2013 .

[204]  Mary Ann Curran,et al.  Life cycle assessment as a tool to enhance the environmental performance of carbon nanotube products: a review , 2012 .

[205]  Xiangwu Zhang,et al.  Aligned Carbon Nanotube‐Silicon Sheets: A Novel Nano‐architecture for Flexible Lithium Ion Battery Electrodes , 2013, Advanced materials.

[206]  Gerald V. Brown,et al.  Turboelectric Distributed Propulsion Engine Cycle Analysis for Hybrid-Wing-Body Aircraft , 2009 .

[207]  J. Baur,et al.  Challenges and Opportunities in Multifunctional Nanocomposite Structures for Aerospace Applications , 2007 .

[208]  Valter Mariani Primiani,et al.  Reduction of satellite electromagnetic scattering by carbon nanostructured multilayers , 2013 .

[209]  R. J. Waite,et al.  Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene , 1973 .

[210]  A. Bolonkin Non-Rocket Earth-Moon Transport System , 2003 .

[211]  H. Boehm.,et al.  Carbon from carbon monoxide disproportionation on nickel and iron catalysts : morphological studies and possible growth mechanisms , 1973 .

[212]  J. Isaacs,et al.  Satellite Elongation into a True "Sky-Hook" , 1966, Science.

[213]  M. Anantram,et al.  Observation and Modeling of Single Wall Carbon Nanotube Bend Junctions , 1998 .

[214]  R. Tardif,et al.  Physiologically Based Modeling of n-Hexane Kinetics in Humans Following Inhalation Exposure at Rest and Under Physical Exertion: Impact on Free 2,5-Hexanedione in Urine and on n-Hexane in Alveolar Air , 2005, Journal of occupational and environmental hygiene.

[215]  W. K. Maser,et al.  Large-scale production of single-walled carbon nanotubes by the electric-arc technique , 1997, Nature.

[216]  Amir S. Gohardani,et al.  A synergistic glance at the prospects of distributed propulsion technology and the electric aircraft concept for future unmanned air vehicles and commercial/military aviation , 2013 .

[217]  V. Popov Carbon Nanotubes: Properties and Applications , 2006 .

[218]  Isaac M. Daniel,et al.  Characterization and modeling of mechanical behavior of polymer/clay nanocomposites , 2003 .

[219]  Charles E. Harris,et al.  A Survey of Emerging Materials for Revolutionary Aerospace Vehicle Structures and Propulsion Systems , 2002 .

[220]  Joselito M. Razal,et al.  Super-tough carbon-nanotube fibres , 2003, Nature.

[221]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[222]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[223]  Daniel J. Inman,et al.  A Review of Morphing Aircraft , 2011 .

[224]  M. Miki-Yoshida,et al.  Catalytic growth of carbon microtubules with fullerene structure , 1993 .

[225]  Jang‐Kyo Kim,et al.  Carbon Nanotubes for Polymer Reinforcement , 2011 .

[226]  V. Shanov,et al.  Embedded Carbon Nanotube Sensor Thread for Structural Health Monitoring and Strain Sensing of Composite Materials , 2014 .

[227]  R. L. Wal,et al.  Application of Carbon Based Nano-Materials to Aeronautics and Space Lubrication , 2007 .

[228]  P. Spanos,et al.  Estimation of the physical properties of nanocomposites by finite-element discretization and Monte Carlo simulation , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[229]  M. Moniruzzaman,et al.  Polymer Nanocomposites Containing Carbon Nanotubes , 2006 .

[230]  Tsu-Wei Chou,et al.  Microstructural design of fiber composites: Subject index , 1992 .

[231]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical Review Letters.

[232]  C. Santeufemio,et al.  Characterization of Exposures To Nanoscale Particles and Fibers During Solid Core Drilling of Hybrid Carbon Nanotube Advanced Composites , 2010, International journal of occupational and environmental health.

[233]  M. Dresselhaus Carbon nanotubes , 1995 .

[234]  John Valasek,et al.  Preliminary Results of Adaptive-Reinforcement Learning Control for Morphing Aircraft , 2004 .

[235]  Pablo J. Zarco-Tejada,et al.  Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[236]  D. Chung Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing , 2012 .

[237]  L. Robeson,et al.  Polymer nanotechnology: Nanocomposites , 2008 .

[238]  James P. Thomas,et al.  Mechanical design and performance of composite multifunctional materials , 2004 .

[239]  P. Ajayan Nanotubes from Carbon. , 1999, Chemical reviews.

[240]  Eduard M. Bazelyan,et al.  Lightning Physics and Lightning Protection , 2000 .

[241]  V. Kostopoulos,et al.  Carbon Nanotubes for Novel Hybrid Structural Composites with Enhanced Damage Tolerance and Self-Sensing/Actuating Abilities , 2013 .

[242]  Bradley C. Edwards,et al.  The space elevator , 2003 .

[243]  Noboru Takeichi Geostationary station keeping control of a space elevator during initial cable deployment , 2010 .

[244]  A. Beese,et al.  Tailoring the Mechanical Properties of Carbon Nanotube Fibers , 2013 .

[245]  D. Chung,et al.  Damage detection using self-sensing concepts , 2007 .

[246]  Arun K. Misra,et al.  Dynamics of a partial space elevator with multiple climbers , 2010 .

[247]  Matthew DeGarmo,et al.  Prospective Unmanned Aerial Vehicle Operations in the Future National Airspace System , 2004 .

[248]  C. Mirkin,et al.  Nanotechnology research directions for societal needs in 2020: summary of international study , 2011 .

[249]  M. Prato,et al.  Applications of carbon nanotubes in drug delivery. , 2005, Current opinion in chemical biology.

[250]  A. M. Jorgensen,et al.  Passive radiation shielding considerations for the proposed space elevator , 2007 .

[251]  Jörg Wellnitz,et al.  Hydrogen Storage Technologies: New Materials, Transport, and Infrastructure , 2012 .

[252]  G. Bae,et al.  Exposure assessment of carbon nanotube manufacturing workplaces , 2010, Inhalation toxicology.

[253]  K. Sprong,et al.  Potential Impact of Carbon Nanotube Reinforced Polymer Composite on Commercial Aircraft Performance and Economics , 2004 .

[254]  Mildred S. Dresselhaus,et al.  Relation of Carbon Nanotubes to Other Carbon Materials , 2001 .

[255]  M. Terranova Special Issue on Carbon Nanotubes , 2006 .

[256]  James L. Felder,et al.  Distributed Turboelectric Propulsion for Hybrid Wing Body Aircraft , 2008 .

[257]  P. Baron,et al.  Exposure to Carbon Nanotube Material: Aerosol Release During the Handling of Unrefined Single-Walled Carbon Nanotube Material , 2004, Journal of toxicology and environmental health. Part A.

[258]  Mohammed H Al-Saleh,et al.  Review of the mechanical properties of carbon nanofiber/polymer composites , 2011 .

[259]  M. Dresselhaus,et al.  Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons , 1998 .

[260]  Ronald F. Gibson,et al.  A review of recent research on mechanics of multifunctional composite materials and structures , 2010 .

[261]  Reece A. Clothier,et al.  Definition of an airworthiness certification framework for civil unmanned aircraft systems , 2011 .

[262]  Brian L. Wardle,et al.  Limiting Mechanisms of Mode I Interlaminar Toughening of Composites Reinforced with Aligned Carbon Nanotubes , 2009 .

[263]  Andrea E O'Rear,et al.  SWNT-Filled Thermoplastic and Elastomeric Composites Prepared by Miniemulsion Polymerization , 2002 .