Governing factors of the local tensile stress in the vicinity of a rapidly propagating crack tip in elastic-viscoplastic solids

Abstract Because the local tensile stress near the rapidly propagating crack tip is an important factor to simulate brittle crack propagation/arrest behavior in steels based on the local fracture stress criterion, this research carried out a series of the dynamic 2D finite element analyses to characterize the local tensile stresses in elastic-viscoplastic solids. Through these analyses, factors governing the local tensile stresses are clarified. The analyses revealed that the local tensile stress is determined by a combination of the crack length, applied stress, crack velocity, and temperature. The influence of crack acceleration was also investigated from the perspective of the local tensile stresses. As the result, the crack acceleration negligibly influences the local tensile stresses and thus it is not a factor governing the local tensile stress.

[1]  Sören Östlund On numerical modeling and fracture criteria of dynamic elastic-viscoplastic crack growth , 1990 .

[2]  Thomas Siegmund,et al.  A numerical study of dynamic crack growth in elastic-viscoplastic solids , 1997 .

[3]  Machida Susumu,et al.  Some recent experimental work in Japan on fast fracture and crack arrest , 1986 .

[4]  J. Achenbach,et al.  Crack-tip fields in a viscoplastic material , 1987 .

[5]  X. Zhu,et al.  Dynamic crack-tip field for tensile cracks propagating in power-law hardening materials , 2002 .

[6]  Kazuki Shibanuma,et al.  Local stress in the vicinity of the propagating cleavage crack tip in ferritic steel , 2018 .

[7]  Clémentine Jacquemoud,et al.  Prediction of cleavage crack propagation path in a nuclear pressure vessel steel , 2018 .

[8]  John W. Hutchinson,et al.  Dynamic Fracture Mechanics , 1990 .

[9]  Philippe Bompard,et al.  Propagation and arrest of cleavage cracks in a nuclear pressure vessel steel , 2012 .

[10]  John R. Rice,et al.  ON THE RELATIONSHIP BETWEEN CRITICAL TENSILE STRESS AND FRACTURE TOUGHNESS IN MILD STEEL , 1973 .

[11]  K. Arakawa,et al.  Unsteady Dynamic Crack Propagation in a Brittle Polymer , 2007 .

[12]  R. E. Link,et al.  Crack arrest testing of high strength structural steels for naval applications , 2009 .

[13]  H. Hein,et al.  Final Results from the Crack Initiation and Arrest of Irradiated Steel Materials Project on Fracture Mechanical Assessments of Pre-Irradiated RPV Steels Used in German PWR , 2009 .

[14]  S. Machida,et al.  STUDY OF BRITTLE CRACK ARRESTER--CONSIDERATIONS ON THE ARREST OF A VERY LONG CRACK , 1973 .

[15]  N. Valoroso,et al.  A cohesive zone model with rate-sensitivity for fast crack propagation , 2014 .

[16]  Ares J. Rosakis,et al.  Three Dimensional Cohesive-Element Analysis and Experiments of Dynamic Fracture in C300 Steel , 2000 .

[17]  Ares J. Rosakis,et al.  The determination of dynamic fracture toughness of AISI 4340 steel by the shadow spot method , 1984 .

[18]  R. E. Link,et al.  Dynamic and static characterization of compact crack arrest tests of navy and nuclear steels , 2010 .

[19]  Benoit Prabel,et al.  Using the X-FEM method to model the dynamic propagation and arrest of cleavage cracks in ferritic steel , 2008 .

[20]  C. H. Popelar A viscoplastic analysis for predicting the dynamic fracture toughness of A533B steel , 1990 .

[21]  Ares J. Rosakis,et al.  The interpretation of optical caustics in the presence of dynamic non-uniform crack-tip motion histories: A study based on a higher order transient crack-tip expansion , 1991 .

[22]  R. Krishna Kumar,et al.  Finite element crack growth algorithm for dynamic fracture , 1993 .

[23]  K. Broberg Cracks and Fracture , 1999 .

[24]  L. Freund,et al.  Crack tip plasticity in dynamic fracture , 1987 .

[25]  Clotilde Berdin,et al.  Local approach to fracture for cleavage crack arrest prediction , 2008 .

[26]  E. W. Hart,et al.  Steady state crack growth in elastic-viscoplastic materials , 1987 .

[27]  S. Aihara,et al.  Effect of Impact Energy in ESSO Test (Part 3: Experimental Validation for New Validity Criteria of Impact Condition Giving Constant Evaluation in ESSO Test) , 2018, Journal of Testing and Evaluation.

[28]  R. Talemi,et al.  Numerical simulation of dynamic brittle fracture of pipeline steel subjected to DWTT using XFEM-based cohesive segment technique , 2016 .

[29]  Y. Nakano,et al.  Crack Arrest Toughness of Structural Steels Evaluated by Compact Test , 1981 .

[30]  Ares J. Rosakis,et al.  Dynamic failure mechanics , 2000 .

[31]  A. Priest An energy balance in crack propagation and arrest , 1998 .

[32]  S. Aihara,et al.  Effect of specimen size, applied stress and temperature gradient on brittle crack arrest toughness test , 2017, International Journal of Fracture.

[33]  R A Ibrahim Overview of Structural Life Assessment and Reliability, Part VI: Crack Arresters , 2016 .

[34]  C. E. Pugh,et al.  Elastodynamic fracture analysis of large crack-arrest experiments , 1987 .

[35]  S. J. Wiersma,et al.  A review of static crack arrest concepts , 1986 .

[36]  半田 恒久,et al.  Development of Guidelines on Brittle Crack Arrest Design : Brittle crack arrest design for large container ships-1(Summaries of Papers published by Staff of National Maritime Research Institute at Outside Organizations) , 2010 .

[37]  Masahiro Toyosada,et al.  The Estimating Method of Critical CTOD and J integral at Arbitrary Crosshead speed , 1992 .

[38]  Kazuki Shibanuma,et al.  Brittle crack propagation/arrest behavior in steel plate – Part I: Model formulation , 2016 .

[39]  Kazuki Shibanuma,et al.  Local stress evaluation of rapid crack propagation in finite element analyses , 2018, International Journal of Solids and Structures.

[40]  R. Krishna Kumar,et al.  Finite element analysis of dynamic crack growth under plane stress in a viscoplastic material , 1990 .

[41]  Kazuki Shibanuma,et al.  A physics based model to simulate brittle crack arrest in steel plates incorporating experimental and numerical evidences , 2019, Engineering Fracture Mechanics.

[42]  Takao Yoshikawa,et al.  Fracture control of extremely thick welded steel plates applied to the deck structure of large container ships , 2013 .

[43]  Toshihisa Nishioka,et al.  Computational dynamic fracture mechanics , 1997 .

[44]  J. Achenbach,et al.  Numerical analysis of fast mode-1 fracture of a strip of viscoplastic work-hardening material , 1983 .

[45]  Brittle crack propagation behavior in a member subjected to bending load , 2017 .

[46]  P. Viot,et al.  Dynamic energy release rate evaluation of rapid crack propagation in discrete element analysis , 2018, International Journal of Fracture.

[47]  Masahiro Toyosada,et al.  A SIMPLE ESTIMATING METHOD OF CONSTITUTIVE EQUATION FOR STRUCTURAL STEEL AS A FUNCTION OF STRAIN RATE AND TEMPERATURE , 1994 .

[48]  Satya N. Atluri,et al.  GENERATION AND PROPAGATION ANALYSES OF HIGH-STRAIN-RATE DYNAMIC CRACK PROPAGATION IN A VISCO-PLASTIC SOLID , 1989 .

[49]  John W. Hutchinson,et al.  High strain-rate crack growth in rate-dependent plastic solids , 1985 .

[50]  Kazuki Shibanuma,et al.  Brittle crack propagation/arrest behavior in steel plate – Part III: Discussions on arrest design , 2017 .

[51]  H. W. Swift Plastic instability under plane stress , 1952 .

[52]  Clotilde Berdin,et al.  3D modeling of cleavage crack arrest with a stress criterion , 2012 .

[53]  S. Aihara,et al.  Fracture mechanical modeling of brittle fracture propagation and arrest of steel (1) , 1995 .

[54]  Björn Brickstad A viscoplastic analysis of rapid crack propagation experiments in steel , 1983 .

[55]  Peter Wriggers,et al.  Numerical simulation of rapid crack propagation in viscoplastic materials , 1996 .

[56]  Ares J. Rosakis,et al.  Dynamic fracture initiation and propagation in 4340 steel under impact loading , 1990 .

[57]  Kazuki Shibanuma,et al.  Brittle crack propagation/arrest behavior in steel plate – Part II: Experiments and model validation , 2016 .

[58]  S. Aihara,et al.  A simplified method for evaluation of brittle crack arrest toughness of steels in scaled-down bending tests , 2019, Engineering Fracture Mechanics.