Element distribution in the root zone of ultramafic-hosted black smoker-like systems: Constraints from an Alpine analog
暂无分享,去创建一个
[1] P. Boulvais,et al. The nature of the interface between basalts and serpentinized mantle in oceanic domains: Insights from a geological section in the Alps , 2020, Tectonophysics.
[2] Andrew J. Martin,et al. Effects of magmatic volatile influx in mafic VMS hydrothermal systems: Evidence from the Troodos ophiolite, Cyprus , 2020 .
[3] D. Sauter,et al. Geochemical characteristics of basalts related to incipient oceanization: The example from the Alpine‐Tethys OCTs , 2019, Terra Nova.
[4] P. Boulvais,et al. Unravelling the root zone of ultramafic‐hosted black smokers‐like hydrothermalism from an Alpine analog , 2019, Terra Nova.
[5] C. Ribes,et al. Polyphase tectono-magmatic evolution during mantle exhumation in an ultra-distal, magma-poor rift domain: example of the fossil Platta ophiolite, SE Switzerland , 2019, International Journal of Earth Sciences.
[6] D. Teagle,et al. Metal fluxes during magmatic degassing in the oceanic crust: sulfide mineralisation at ODP site 786B, Izu-Bonin forearc , 2019, Mineralium Deposita.
[7] J. Collot,et al. Syntectonic carbonation during synmagmatic mantle exhumation at an ocean-continent transition , 2019, Geology.
[8] M. Hannington,et al. Constraints on the behavior of trace elements in the actively-forming TAG deposit, Mid-Atlantic Ridge, based on LA-ICP-MS analyses of pyrite , 2018, Chemical Geology.
[9] Andrew J. Martin,et al. Extreme enrichment of selenium in the Apliki Cyprus-type VMS deposit, Troodos, Cyprus , 2018, Mineralogical Magazine.
[10] Hongjun Yu,et al. Geochemistry of pyrite and chalcopyrite from an active black smoker in 49.6°E Southwest Indian Ridge , 2018, Marine Geophysical Research.
[11] R. Large,et al. Gold-and silver-rich massive sulfides from the semenov-2 hydrothermal field, 13°31.13'N, Mid-Atlantic ridge: a case of magmatic contribution? , 2017 .
[12] H. Gäbler,et al. Development of a Matrix‐Matched Sphalerite Reference Material (MUL‐ZnS‐1) for Calibration of In Situ Trace Element Measurements by Laser Ablation‐Inductively Coupled Plasma‐Mass Spectrometry , 2017 .
[13] B. Murton,et al. The formation of gold‐rich seafloor sulfide deposits: Evidence from the Beebe hydrothermal vent field, Cayman Trough , 2017 .
[14] R. Large,et al. Chimneys in Paleozoic massive sulfide mounds of the Urals VMS deposits: mineral and trace element comparison with modern black, grey, white and clear smokers , 2017 .
[15] G. Manatschal,et al. Defining diagnostic criteria to describe the role of rift inheritance in collisional orogens: the case of the Err-Platta nappes (Switzerland) , 2017, Swiss Journal of Geosciences.
[16] W. Bach,et al. The Cogne magnetite deposit (Western Alps, Italy): a Late Jurassic seafloor ultramafic-hosted hydrothermal system? , 2017 .
[17] S. Roberts,et al. The influence of spreading rate, basement composition, fluid chemistry and chimney morphology on the formation of gold-rich SMS deposits at slow and ultraslow mid-ocean ridges , 2017, Mineralium Deposita.
[18] M. Harris,et al. Sulphide mineral evolution and metal mobility during alteration of the oceanic crust: Insights from ODP Hole 1256D , 2016 .
[19] K. Haase,et al. Systematic variations of trace element and sulfur isotope compositions in pyrite with stratigraphic depth in the Skouriotissa volcanic-hosted massive sulfide deposit, Troodos ophiolite, Cyprus , 2016 .
[20] G. Manatschal,et al. Tracing mantle‐reacted fluids in magma‐poor rifted margins: The example of Alpine Tethyan rifted margins , 2015 .
[21] S. Petersen,et al. Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides : an in-situ LA-ICP-MS study , 2015 .
[22] D. French,et al. The chemistry of hydrothermal magnetite: A review , 2014 .
[23] J. Escartín,et al. Tectonic structure, lithology, and hydrothermal signature of the Rainbow massif (Mid‐Atlantic Ridge 36°14′N) , 2014 .
[24] G. Beaudoin,et al. Trace elements in magnetite as petrogenetic indicators , 2014, Mineralium Deposita.
[25] E. Baker,et al. An authoritative global database for active submarine hydrothermal vent fields , 2013 .
[26] J. Charlou,et al. Geodiversity of hydrothermal processes along the Mid-Atlantic Ridge and ultramafic-hosted mineralization: A new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit , 2013 .
[27] Sven Petersen,et al. Physical and Chemical Processes of Seafloor Mineralization at Mid‐Ocean Ridges , 2013 .
[28] D. Yoerger,et al. First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge , 2012 .
[29] J. Hellstrom,et al. Iolite: Freeware for the visualisation and processing of mass spectrometric data , 2011 .
[30] T. Pettke,et al. Plagioclase Peridotites in Ocean–Continent Transitions: Refertilized Mantle Domains Generated by Melt Stagnation in the Shallow Mantle Lithosphere , 2010 .
[31] P. Peltonen,et al. Outokumpu revisited: New mineral deposit model for the mantle peridotite-associated Cu–Co–Zn–Ni–Ag–Au sulphide deposits , 2008 .
[32] P. Nimis,et al. Peculiarities of some mafic–ultramafic- and ultramafic-hosted massive sulfide deposits from the Main Uralian Fault Zone, southern Urals , 2008 .
[33] S. Scott,et al. Sulfide mineralization in an ultramafic-rock hosted seafloor hydrothermal system: From serpentinization to the formation of Cu-Zn-(Co)-rich massive sulfides , 2007 .
[34] J. Escartín,et al. Oceanic detachment faults focus very large volumes of black smoker fluids , 2007 .
[35] M. Tivey. Generation of seafloor hydrothermal vent fluids and associated mineral deposits , 2007 .
[36] Y. Fouquet,et al. Mineralogy, geochemistry, and Nd isotope composition of the Rainbow hydrothermal field, Mid-Atlantic Ridge , 2006 .
[37] J. Palandri,et al. Sulfide Mineral Precipitation from Hydrothermal Fluids , 2006 .
[38] Y. Fouquet,et al. Subsurface processes at the lucky strike hydrothermal field, Mid-Atlantic ridge: evidence from sulfur, selenium, and iron isotopes , 2004 .
[39] Y. Fouquet,et al. Copper Isotope Systematics of the Lucky Strike, Rainbow, and Logatchev Sea-Floor Hydrothermal Fields on the Mid-Atlantic Ridge , 2004 .
[40] Y. Xiong. Predicted equilibrium constants for solid and aqueous selenium species to 300 °C: applications to selenium-rich mineral deposits , 2003 .
[41] Mei-Fu Zhou,et al. Ni–Cu–(PGE) magmatic sulfide deposits in the Yangliuping area, Permian Emeishan igneous province, SW China , 2003 .
[42] O. Müntener,et al. Onset of magmatic accretion within a magma-poor rifted margin: a case study from the Platta ocean-continent transition, eastern Switzerland , 2002 .
[43] J. Charlou,et al. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14'N, MAR) , 2002 .
[44] D. Bernoulli,et al. The transition from rifting to sea‐floor spreading within a magma‐poor rifted margin: field and isotopic constraints , 2002 .
[45] W. Ridley,et al. Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique , 2002 .
[46] H. Hasegawa,et al. Determination of trace elements in seawater by fluorinated metal alkoxide glass-immobilized 8-hydroxyquinoline concentration and high-resolution inductively coupled plasma mass spectrometry detection , 1998 .
[47] G. Manatschal,et al. Kinematics of Jurassic rifting, mantle exhumation, and passive-margin formation in the Austroalpine and Penninic nappes (eastern Switzerland) , 1996 .
[48] Katell Henry,et al. Séparation des métaux nobles (Pt, Au) d'une matrice géologique par chromatographie d'échange d'ions et détermination par spectrométrie de fluorescence X , 1996 .
[49] S. Sie,et al. Selenium and its importance to the study of ore genesis: the theoretical basis and its application to volcanic-hosted massive sulfide deposits using pixeprobe analysis , 1995 .
[50] R. F. Mählmann. Das Diagenese-Metamorphose-Muster von Vitrinitreflexion und Illit-"Kristallinität" in Mittelbünden und im Oberhalbstein. Teil 1: Bezüge zur Stockwerktektonik. , 1995 .
[51] Paolo Conti,et al. Repeated change from crustal shortening to orogen-parallel extension in the Austroalpine units of Graubünden , 1994 .
[52] R. Zierenberg,et al. Genesis of massive sulfide deposits on a sediment-covered spreading center, Escanaba Trough, southern Gorda Ridge , 1993 .
[53] P. Candela,et al. Genesis of the ultramafic rock-associated Fe-Cu-Co-Zn-Ni deposits of the Sykesville District, Maryland Piedmont , 1989 .
[54] E. Perseil,et al. Découverte de microstructures de nodules polymétalliques dans les minéralisations manganésifères métamorphiques de Falotta et de Parsettens (Grisons-Suisse) , 1989 .
[55] E. Stumpfl,et al. Postmagmatic, hydrothermal origin of sulfide and arsenide mineralizations at Limassol Forest, Cyprus , 1986 .
[56] M. Foose. Setting of a magmatic sulfide occurrence in a dismembered ophiolite, southwestern Oregon , 1986 .
[57] M. Economou,et al. Compositional and mineralogic constraints on the genesis of ophiolite hosted nickel mineralization in the Pevkos area, Limassol Forest, Cyprus , 1985 .
[58] P. Rona. Black smokers on the Mid‐Atlantic Ridge , 1985 .
[59] T. V. Leeuwen,et al. Contributions to the geology of mineral deposits , 1984 .
[60] M. Reed. Seawater-basalt reaction and the origin of greenstones and related ore deposits , 1983 .
[61] M. Leblanc,et al. Cobalt arsenide orebodies related to an upper Proterozoic ophiolite; Bou Azzer (Morocco) , 1982 .
[62] H. Palme,et al. Trace elements in ocean ridge basalt glasses - Implications for fractionations during mantle evolution and petrogenesis , 1980 .
[63] M. Seguret,et al. Découverte par submersible de sulfures polymétalliques massifs sur la dorsale du Pacifique oriental, par 21°N (projet Rita ) , 1978 .
[64] R. Large. Chemical evolution and zonation of massive sulfide deposits in volcanic terrains , 1977 .
[65] D. Bernoulli,et al. Diagenese et metamorphisme des argiles dans le Rhetien Sud-alpin et Austro-alpin (Lombardie et Grisons) , 1976 .
[66] W. Gustafson. The Stability of Andradite, Hedenbergite, and Related Minerals in the System Ca—Fe—Si—O—H , 1974 .