BACTOME—a reference database to explore the sequence- and gene expression-variation landscape of Pseudomonas aeruginosa clinical isolates

Abstract Extensive use of next-generation sequencing (NGS) for pathogen profiling has the potential to transform our understanding of how genomic plasticity contributes to phenotypic versatility. However, the storage of large amounts of NGS data and visualization tools need to evolve to offer the scientific community fast and convenient access to these data. We introduce BACTOME as a database system that links aligned DNA- and RNA-sequencing reads of clinical Pseudomonas aeruginosa isolates with clinically relevant pathogen phenotypes. The database allows data extraction for any single isolate, gene or phenotype as well as data filtering and phenotypic grouping for specific research questions. With the integration of statistical tools we illustrate the usefulness of a relational database structure for the identification of phenotype–genotype correlations as an essential part of the discovery pipeline in genomic research. Furthermore, the database provides a compilation of DNA sequences and gene expression values of a plethora of clinical isolates to give a consensus DNA sequence and consensus gene expression signature. Deviations from the consensus thereby describe the genomic landscape and the transcriptional plasticity of the species P. aeruginosa. The database is available at https://bactome.helmholtz-hzi.de.

[1]  V. Hinman,et al.  Evolution of transcription factor function as a mechanism for changing metazoan developmental gene regulatory networks , 2015, EvoDevo.

[2]  K. Hornischer,et al.  Elucidation of Sigma Factor-Associated Networks in Pseudomonas aeruginosa Reveals a Modular Architecture with Limited and Function-Specific Crosstalk , 2015, PLoS pathogens.

[3]  S. Molin,et al.  Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis , 2014, Nature Genetics.

[4]  F. Raymond,et al.  Phenetic Comparison of Prokaryotic Genomes Using k-mers , 2017, Molecular biology and evolution.

[5]  M. Whiteley,et al.  Essential genome of Pseudomonas aeruginosa in cystic fibrosis sputum , 2015, Proceedings of the National Academy of Sciences.

[6]  M. Maciá,et al.  Overexpression of AmpC and Efflux Pumps in Pseudomonas aeruginosa Isolates from Bloodstream Infections: Prevalence and Impact on Resistance in a Spanish Multicenter Study , 2011, Antimicrobial Agents and Chemotherapy.

[7]  S. Lory,et al.  Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen , 2000, Nature.

[8]  David A. D'Argenio,et al.  Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[9]  F. Klawonn,et al.  Open Access Research Article Evolutionary Conservation of Essential and Highly Expressed Genes in Pseudomonas Aeruginosa , 2022 .

[10]  Peter F. Stadler,et al.  ViennaRNA Package 2.0 , 2011, Algorithms for Molecular Biology.

[11]  Andreas Dötsch,et al.  Quantitative Contributions of Target Alteration and Decreased Drug Accumulation to Pseudomonas aeruginosa Fluoroquinolone Resistance , 2012, Antimicrobial Agents and Chemotherapy.

[12]  Dieter Jahn,et al.  PRODORIC (release 2009): a database and tool platform for the analysis of gene regulation in prokaryotes , 2008, Nucleic Acids Res..

[13]  Christian Weinel,et al.  Population structure of Pseudomonas aeruginosa , 2007, Proceedings of the National Academy of Sciences.

[14]  Li Li,et al.  Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial , 2006, Genome Biology.

[15]  S. Molin,et al.  Evolutionary insight from whole-genome sequencing of Pseudomonas aeruginosa from cystic fibrosis patients. , 2015, Future microbiology.

[16]  B. Birren,et al.  Dynamics of Pseudomonas aeruginosa genome evolution , 2008, Proceedings of the National Academy of Sciences.

[17]  Raymond Lo,et al.  Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database , 2015, Nucleic Acids Res..

[18]  Carreño Carreño,et al.  Evaluación de la diversidad taxonómica y funcional de la comunidad microbiana relacionada con el ciclo del nitrógeno en suelos de cultivo de arroz con diferentes manejos del tamo , 2020 .

[19]  Dean Cheng,et al.  Pseudomonas aeruginosa Genome Database and PseudoCAP: facilitating community-based, continually updated, genome annotation , 2004, Nucleic Acids Res..

[20]  Lutz Wiehlmann,et al.  Pseudomonas aeruginosa Genomic Structure and Diversity , 2011, Front. Microbio..

[21]  Tomislav Šmuc,et al.  The landscape of microbial phenotypic traits and associated genes , 2016, Nucleic acids research.

[22]  M. Silby,et al.  Pseudomonas genomes: diverse and adaptable. , 2011, FEMS microbiology reviews.

[23]  H. Tettelin,et al.  The microbial pan-genome. , 2005, Current opinion in genetics & development.

[24]  Geoffrey L. Winsor,et al.  Clinical utilization of genomics data produced by the international Pseudomonas aeruginosa consortium , 2015, Front. Microbiol..

[25]  Heng Li,et al.  A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data , 2011, Bioinform..