Improving the stochastic watershed

The stochastic watershed is an unsupervised segmentation tool recently proposed by Angulo and Jeulin. By repeated application of the seeded watershed with randomly placed markers, a probability density function for object boundaries is created. In a second step, the algorithm then generates a meaningful segmentation of the image using this probability density function. The method performs best when the image contains regions of similar size, since it tends to break up larger regions and merge smaller ones. We propose two simple modifications that greatly improve the properties of the stochastic watershed: (1) add noise to the input image at every iteration, and (2) distribute the markers using a randomly placed grid. The noise strength is a new parameter to be set, but the output of the algorithm is not very sensitive to this value. In return, the output becomes less sensitive to the two parameters of the standard algorithm. The improved algorithm does not break up larger regions, effectively making the algorithm useful for a larger class of segmentation problems.

[1]  Serge Beucher,et al.  Use of watersheds in contour detection , 1979 .

[2]  Robert F. Murphy,et al.  Nuclear segmentation in microscope cell images: A hand-segmented dataset and comparison of algorithms , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[3]  M Faessel,et al.  Segmentation of 3D microtomographic images of granular materials with the stochastic watershed , 2010, Journal of microscopy.

[4]  Jesús Angulo,et al.  Classification-driven stochastic watershed. Application to multispectral segmentation , 2008, CGIV/MCS.

[5]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[6]  Luc Vincent,et al.  Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Peter R. Mouton,et al.  Principles and Practices of Unbiased Stereology: An Introduction for Bioscientists , 2002 .

[8]  John Immerkær,et al.  Fast Noise Variance Estimation , 1996, Comput. Vis. Image Underst..

[9]  Noel A. C. Cressie,et al.  Statistics for Spatial Data: Cressie/Statistics , 1993 .

[10]  Cris L. Luengo Hendriks,et al.  Revisiting priority queues for image analysis , 2010, Pattern Recognit..

[11]  S. Beucher,et al.  Morphological segmentation , 1990, J. Vis. Commun. Image Represent..

[12]  Cris L. Luengo Hendriks,et al.  Stochastic watershed – an analysis , 2012 .

[13]  Jean Stawiaski,et al.  A Stochastic Evaluation of the Contour Strength , 2010, DAGM-Symposium.

[14]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[15]  Jesús Angulo,et al.  Semi-supervised hyperspectral image segmentation using regionalized stochastic watershed , 2010, Defense + Commercial Sensing.

[16]  Dominique Jeulin,et al.  Stochastic watershed segmentation , 2007, ISMM.

[17]  J. W. Modestino,et al.  Flat Zones Filtering, Connected Operators, and Filters by Reconstruction , 1995 .

[18]  Gilles Bertrand,et al.  Watershed Cuts: Thinnings, Shortest Path Forests, and Topological Watersheds , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Charless C. Fowlkes,et al.  Contour Detection and Hierarchical Image Segmentation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.