Lois de commande pour une classe de modèles non linéaires sous la forme Takagi-Sugeno : Mise sous forme LMI

Cette these se focalise sur une classe particuliere de modeles non lineaires appeles modeles Takagi-Sugeno. Meme s'ils sont issus de l'approche historique de la logique floue, ils peuvent s'interpreter comme une collection de modeles lineaires interconnectes par des fonctions non lineaires. L'etude de la stabilite de ces types de modeles fait appel, dans la grande majorite des cas, a la methode directe de Lyapunov avec une fonction de type quadratique. Celle-ci permettant ecrire facilement des conditions sous la forme de contraintes LMI. Les conditions obtenues ne sont que suffisantes. De nombreux resultats sont disponibles aujourd'hui pour ce type de modeles. Les premiers travaux ne traitaient que de la stabilite et de stabilisation sans criteres de robustesse ou notions de performances. Depuis des extensions a des retours d'etat avec observateur, a des modeles sous forme descripteur, a des modeles incertains, a des modeles a retard a des modeles incertains a retard, a des retours de sortie dynamiques,... existent. Des criteres de performances ont aussi ete consideres comme la minimisation d'un critere quadratique, D-stabilite, Hinf,... En depit de cette multitude de resultats, il reste un certain nombre de problemes a resoudre. L'approche par fonction de Lyapunov quadratique semble avoir atteint ces limites. Les conditions obtenues etant seulement suffisantes le principal probleme est de savoir que faire si elles sont trop restrictives ? Comment relâcher un probleme LMI qui n'a pas de solution ? Le but de ce memoire est de sortir du cadre des fonctions de Lyapunov quadratiques en proposant des resultats moins conservatifs que ceux rencontres dans la litterature..

[1]  Sangchul Won,et al.  A new fuzzy Lyapunov function approach for a Takagi-Sugeno fuzzy control system design , 2006, Fuzzy Sets Syst..

[2]  Kazuo Tanaka,et al.  An approach to fuzzy control of nonlinear systems: stability and design issues , 1996, IEEE Trans. Fuzzy Syst..

[3]  Gang Feng Controller synthesis of fuzzy dynamic systems based on piecewise Lyapunov functions , 2003, IEEE Trans. Fuzzy Syst..

[4]  J. Lauber,et al.  Moteur à allumage commandé avec EGR : modélisation et commande non linéaires , 2003 .

[5]  Kazuo Tanaka,et al.  Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs , 1998, IEEE Trans. Fuzzy Syst..

[6]  Jun Yoneyama,et al.  Robust control analysis and synthesis for uncertain fuzzy systems with time-delay , 2003, The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03..

[7]  A. Megretski Integral quadratic constraints derived from the set-theoretic analysis of difference inclusions , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[8]  Paolo Bolzern,et al.  The periodic Lyapunov equation , 1988 .

[9]  J. Bernussou,et al.  A new robust D-stability condition for real convex polytopic uncertainty , 2000 .

[10]  Engang Tian,et al.  Delay-dependent stability analysis and synthesis of uncertain T-S fuzzy systems with time-varying delay , 2006, Fuzzy Sets Syst..

[11]  Bing Chen,et al.  Reliable control design of fuzzy dynamic systems with time-varying delay , 2004, Fuzzy Sets Syst..

[12]  Robert Babuska,et al.  Perspectives of fuzzy systems and control , 2005, Fuzzy Sets Syst..

[13]  Karolos M. Grigoriadis,et al.  A unified algebraic approach to linear control design , 1998 .

[14]  Thierry Marie Guerra,et al.  Modélisation et commande d'un véhicule à deux roues , 2006 .

[15]  Alexandre Kruszewski,et al.  Non-Quadratic Stabilization Conditions for Uncertain Discrete Nonlinear Models in the Takagi-Sugeno's Form , 2004 .

[16]  Yung-Sheng Liu,et al.  A new LMI-based approach to relaxed quadratic stabilization of T-S fuzzy control systems , 2003, SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme - System Security and Assurance (Cat. No.03CH37483).

[17]  A. Kruszewski,et al.  New Approaches for the Stabilization of Discrete Takagi-Sugeno Fuzzy Models , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[18]  Ali Jadbabaie,et al.  Fuzzy observer-based control of nonlinear systems , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[19]  Yann Blanco Stabilisation des modèles Takagi-Sugeno et leur usage pour la commande des systèmes non linéaires , 2001 .

[20]  Karl-Erik Årzén,et al.  Piecewise quadratic stability of fuzzy systems , 1999, IEEE Trans. Fuzzy Syst..

[21]  Tao Li,et al.  Robust stabilization for delayed discrete-time fuzzy systems via basis-dependent Lyapunov-Krasovskii function , 2005, Fuzzy Sets Syst..

[22]  Yong-Yan Cao,et al.  Stability analysis and synthesis of nonlinear time-delay systems via linear Takagi-Sugeno fuzzy models , 2001, Fuzzy Sets Syst..

[23]  M. C. D. Oliveiraa,et al.  A new discrete-time robust stability condition ( , 1999 .

[24]  Thierry-Marie Guerra,et al.  LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form , 2004, Autom..

[25]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[26]  Zengqi Sun,et al.  Analysis and design of fuzzy controller and fuzzy observer , 1998, IEEE Trans. Fuzzy Syst..

[27]  Akira Ichikawa,et al.  Output stabilization of Takagi-Sugeno fuzzy systems , 2000, Fuzzy Sets Syst..

[28]  H. C. Pietrobom,et al.  On relaxed LMI-based designs for fuzzy regulators and fuzzy observers , 2001, ECC.

[29]  Pierre Apkarian,et al.  Parameterized linear matrix inequality techniques in fuzzy control system design , 2001, IEEE Trans. Fuzzy Syst..

[30]  B. Mansouri Contribution à la synthèse de lois de commandes en poursuite de trajectoire pour les systèmes flous de type Takagi Sugeno incertains , 2005 .

[31]  Kazuo Tanaka,et al.  Fuzzy descriptor systems and nonlinear model following control , 2000, IEEE Trans. Fuzzy Syst..

[32]  Kazuo Tanaka,et al.  Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach , 2008 .

[33]  A. Rantzer,et al.  System analysis via integral quadratic constraints , 1997, IEEE Trans. Autom. Control..

[34]  Robert E. Skelton,et al.  Stability tests for constrained linear systems , 2001 .

[35]  Lihua Xie,et al.  Robust control of a class of uncertain nonlinear systems , 1992 .

[36]  Reza Langari,et al.  An LMI-based H fuzzy control system design with TS framework , 2000, Inf. Sci..

[37]  Kazuo Tanaka,et al.  A robust stabilization problem of fuzzy control systems and its application to backing up control of a truck-trailer , 1994, IEEE Trans. Fuzzy Syst..

[38]  D. Peaucelle,et al.  Robust Performance Analysis of Linear Time-Invariant Uncertain Systems by Taking Higher-Order Time-Derivatives of the State , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[39]  P. Borne,et al.  Non quadratic stability of nonlinear systems in the Takagi-Sugeno form , 2001, 2001 European Control Conference (ECC).

[40]  Komi Gasso Identification des systèmes dynamiques non-linéaires : approche multi-modèle , 2000 .

[41]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[42]  Thierry-Marie Guerra,et al.  Nonquadratic Stabilization Conditions for a Class of Uncertain Nonlinear Discrete Time TS Fuzzy Models: A New Approach , 2008, IEEE Transactions on Automatic Control.

[43]  Thierry-Marie Guerra,et al.  Conditions of output stabilization for nonlinear models in the Takagi-Sugeno's form , 2006, Fuzzy Sets Syst..

[44]  Shengyuan Xu,et al.  Robust H∞ control for uncertain discrete-time systems with time-varying delays via exponential output feedback controllers , 2004, Syst. Control. Lett..