Modified embedded-atom method interatomic potentials for the Fe–Ti–C and Fe–Ti–N ternary systems

Abstract Modified embedded-atom method (MEAM) interatomic potentials for the Fe–Ti–C and Fe–Ti–N ternary systems have been developed based on the previously developed MEAM potentials for sub-unary and binary systems. An attempt was made to find a way to determine ternary potential parameters using the corresponding binary parameters. The calculated coherent interface properties, interfacial energy, work of separation and misfit strain energy between body-centered cubic Fe and NaCl-type TiC or TiN were reasonable when compared with relevant first-principles calculations under the same condition. The applicability of the present potentials for atomistic simulations to investigate nucleation kinetics of TiC or TiN precipitates and their effects on mechanical properties in steels is also demonstrated.

[1]  W. Jung,et al.  An ab initio study of the energetics for interfaces between group V transition metal Nitrides and bcc iron , 2006 .

[2]  B. Lundqvist,et al.  First-principles density-functional study of metal-carbonitride interface adhesion: Co/TiC(001) and Co/TiN(001) , 2001 .

[3]  Herbert F. Wang,et al.  Single Crystal Elastic Constants and Calculated Aggregate Properties. A Handbook , 1971 .

[4]  Yu-Jun Zhao,et al.  Overlayer and superlattice studies of metal/ceramic interfaces: Fe/TiC , 2003 .

[5]  Ping Liu,et al.  Adsorption of sulfur on TiC ( 001 ) : Photoemission and first-principles studies , 2004 .

[6]  R. Schmid-Fetzer,et al.  Critical Assessment and Thermodynamic Modeling of the Ti-N System , 1996, Calphad.

[7]  B. Johansson,et al.  An atomistic approach to the initiation mechanism of galling , 2006 .

[8]  Michael I. Baskes,et al.  Determination of modified embedded atom method parameters for nickel , 1997 .

[9]  Johansson,et al.  Structural, elastic, and high-pressure properties of cubic TiC, TiN, and TiO. , 1996, Physical review. B, Condensed matter.

[10]  J. Calais Band structure of transition metal compounds , 1977 .

[11]  Joanne L. Murray,et al.  Phase diagrams of binary titanium alloys , 1987 .

[12]  K. Nordlund,et al.  Anisotropic elasticity of IVB transition-metal mononitrides determined by ab initio calculations , 2006 .

[13]  B. Lundqvist,et al.  Wetting of TiC and TiN by metals , 2004 .

[14]  Byeong-Joo Lee,et al.  A modified embedded-atom method interatomic potential for the Fe–H system , 2006 .

[15]  Y. Rogovoi Metal-metal and metal-nitrogen bond potentials in cubic mononitrides , 1997 .

[16]  S. Erkoç,et al.  Titanium coverage on a single-wall carbon nanotube: molecular dynamics simulations , 2004 .

[17]  Hugh O. Pierson,et al.  Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications , 1996 .

[18]  M. Baskes,et al.  Modified embedded-atom potentials for cubic materials and impurities. , 1992, Physical review. B, Condensed matter.

[19]  T. Gómez-Acebo,et al.  Applications of computational thermodynamics - the extension from phase equilibrium to phase transformations and other properties , 2007 .

[20]  A. Neckel Recent investigations on the electronic structure of the fourth and fifth group transition metal monocarbides, mononitrides, and monoxides , 1983 .

[21]  Tae-Ho Lee,et al.  A modified embedded-atom method interatomic potential for the Fe–N system: A comparative study with the Fe–C system , 2006 .

[22]  Paweł T. Jochym,et al.  TiC lattice dynamics from ab initio calculations , 1999, 1301.6077.

[23]  Shiqiang Hao,et al.  Atomistic simulation on the phase stability, site preference and lattice parameters for Nd(Fe,T)12 with Nd(Fe,Ti)12Nx , 2002 .

[24]  Michael I. Baskes,et al.  Second nearest-neighbor modified embedded atom method potentials for bcc transition metals , 2001 .

[25]  J. Graciani,et al.  Relaxation of the (001) surface in binary Sc, Ti and V nitrides: a first principles density functional study , 2003 .

[26]  Kazuaki Kobayashi First-principles study of the electronic properties of transition metal nitride surfaces , 2001 .

[27]  Foiles,et al.  Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. , 1986, Physical review. B, Condensed matter.

[28]  W. Münz,et al.  Industrial deposition of binary, ternary, and quaternary nitrides of titanium, zirconium, and aluminum , 1987 .

[29]  A. Matthews Titanium Nitride PVD Coating Technology , 1985 .

[30]  K. Schwarz Band structure and chemical bonding in transition metal carbides and nitrides , 1987 .

[31]  W. Münz Titanium aluminum nitride films: A new alternative to TiN coatings , 1986 .

[32]  Byeong-Joo Lee,et al.  Modified embedded-atom method interatomic potentials for the Fe-Nb and Fe-Ti binary systems , 2008 .

[33]  Joshua R. Smith,et al.  Universal features of the equation of state of metals , 1984 .

[34]  Interaction potentials from periodic density-functional theory calculations: molecular-dynamics simulations of Au clusters deposited on the TiN (001) surface. , 2005 .

[35]  R. Gold,et al.  A study of superconductivity in interstitial compounds , 1967 .

[36]  Seung-Cheol Lee,et al.  Energetics for Interfaces between Group IV Transition Metal Carbides and bcc Iron , 2008 .

[37]  Lei Liu,et al.  Adhesion of metal?carbide/nitride interfaces: Al/TiC and Al/TiN , 2003 .

[38]  Yvon,et al.  Bonding study of TiC and TiN. I. High-precision x-ray-diffraction determination of the valence-electron density distribution, Debye-Waller temperature factors, and atomic static displacements in TiC0.94 and TiN0.99. , 1985, Physical review. B, Condensed matter.

[39]  G. B. Olson,et al.  Computational Design of Hierarchically Structured Materials , 1997 .

[40]  J. Hartford Interface energy and electron structure for Fe/VN , 2000 .

[41]  Jan Drewes Achenbach,et al.  Elastic constants of single‐crystal transition‐metal nitride films measured by line‐focus acoustic microscopy , 1992 .

[42]  Michael I. Baskes,et al.  Second nearest-neighbor modified embedded-atom-method potential , 2000 .

[43]  B. Bouhafs,et al.  First-principles calculations on the electronic structure of TiCxN1−x, ZrxNb1−xC and HfCxN1−x alloys , 2005 .

[44]  M. Hillert,et al.  A reassessment of Ti-C-N based on a critical review of available assessments of Ti-N and Ti-C , 1999 .

[45]  R. Freer The Physics and Chemistry of Carbides, Nitrides and Borides , 1990 .

[46]  From periodic DFT calculations to classical molecular dynamics simulations , 2006 .

[47]  Price,et al.  Total energies and bonding for crystallographic structures in titanium-carbon and tungsten-carbon systems. , 1989, Physical review. B, Condensed matter.

[48]  N. Govind,et al.  Theoretical Study of Hydrogen Adsorption and Diffusion on TiN(100) Surface , 2001 .

[49]  V. Milman,et al.  Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functionals , 2000 .

[50]  M. Baskes,et al.  Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals , 1983 .

[51]  Michael I. Baskes,et al.  Modified embedded-atom method interatomic potentials for Ti and Zr , 2006 .

[52]  Joo-Hyoung Lee,et al.  Strong interface adhesion in Fe/TiC , 2005 .

[53]  E. Carter,et al.  Structure, bonding, and adhesion at the TiC(100)/Fe(110) interface from first principles , 2003 .

[54]  C. Stampfl,et al.  Electronic structure and physical properties of early transition metal mononitrides: Density-functional theory LDA, GGA, and screened-exchange LDA FLAPW calculations , 2001 .

[55]  C. J. Smithells,et al.  Smithells metals reference book , 1949 .

[56]  W. Williams Physics of transition metal carbides , 1988 .

[57]  S. Louie,et al.  Transition metals and their carbides and nitrides: Trends in electronic and structural properties , 1999 .

[58]  S. Jonsson Assessment of the Ti-C System , 1996 .

[59]  O. Eriksson,et al.  Surface energies and work functions of the transition metal carbides , 2004 .

[60]  S. Louie,et al.  Electronic mechanism of hardness enhancement in transition-metal carbonitrides , 1998, Nature.

[61]  T. Antretter,et al.  First-principles study of elastic and thermal properties of refractory carbides and nitrides , 1999 .

[62]  J. Rodgers,et al.  Alloying effects on elastic properties of TiN-based nitrides , 2003 .

[63]  L. Toth Transition Metal Carbides and Nitrides , 1971 .

[64]  M. Baskes,et al.  Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method , 2003 .

[65]  Y. S. Touloukian Thermal Expansion: Nonmetallic Solids , 1977 .

[66]  L. Johansson Electronic and structural properties of transition-metal carbide and nitride surfaces , 1995 .

[67]  Young-Han Shin,et al.  A modified embedded-atom method interatomic potential for Germanium , 2008 .

[68]  H. Miura,et al.  Molecular dynamics analysis of adhesion strength of interfaces between thin films , 2001 .