A Generalized Newton Method for Homogenization of Hamilton-Jacobi Equations
暂无分享,去创建一个
[1] Simone Cacace,et al. A numerical method for Mean Field Games on networks , 2015 .
[2] Boualem Khouider,et al. Computing the Effective Hamiltonian in the Majda-Souganidis Model of Turbulent Premixed Flames , 2002, SIAM J. Numer. Anal..
[3] Régis Monneau,et al. A numerical study for the homogenisation of one-dimensional models describing the motion of dislocations , 2008, Int. J. Comput. Sci. Math..
[4] Régis Monneau,et al. Homogenization of some particle systems with two-body interactions and of the dislocation dynamics , 2008 .
[5] M. Rorro,et al. An approximation scheme for the effective Hamiltonian and applications , 2006 .
[6] Adam M. Oberman,et al. Computing the Effective Hamiltonian using a Variational Approach , 2005, CDC/ECC.
[7] Maurizio Falcone,et al. On a Variational Approximation of the Effective Hamiltonian , 2008 .
[8] S. Osher,et al. One-sided difference approximations for nonlinear conservation laws , 1981 .
[9] Adi Ben-Israel. A Newton-Raphson method for the solution of systems of equations , 1966 .
[10] Lawrence C. Evans,et al. Some new PDE methods for weak KAM theory , 2003 .
[11] Antonin Chambolle,et al. A posteriori error estimates for the effective Hamiltonian of dislocation dynamics , 2012, Numerische Mathematik.
[12] Nicolas Bacaër. Convergence of numerical methods and parameter dependence of min-plus eigenvalue problems, Frenkel-Kontorova models and homogenization of Hamilton-Jacobi equations , 2001 .
[13] Hongkai Zhao,et al. A New Approximation for Effective Hamiltonians for Homogenization of a class of Hamilton-Jacobi Equations , 2011, Multiscale Model. Simul..
[14] P. Lions,et al. Mean field games , 2007 .
[15] F. Camilli,et al. HOMOGENIZATION OF HAMILTON–JACOBI EQUATIONS: NUMERICAL METHODS , 2008 .
[16] Adam M. Oberman,et al. Homogenization of Metric Hamilton-Jacobi Equations , 2009, Multiscale Model. Simul..
[17] Andrea Davini,et al. Aubry Sets for Weakly Coupled Systems of Hamilton-Jacobi Equations , 2012, SIAM J. Math. Anal..
[18] Diogo Aguiar Gomes,et al. A stochastic analogue of Aubry-Mather theory , 2001 .
[19] Fabio Camilli,et al. Rates of convergence in periodic homogenization of fully nonlinear uniformly elliptic PDEs , 2009 .
[20] Marco Cirant,et al. Multi-population Mean Field Games systems with Neumann boundary conditions , 2015 .
[21] R. LeVeque. Numerical methods for conservation laws , 1990 .
[22] Yves Achdou,et al. Mean Field Games: Numerical Methods , 2010, SIAM J. Numer. Anal..