Experiments with classification-based scalarizing functions in interactive multiobjective optimization

In multiobjective optimization methods, the multiple conflicting objectives are typically converted into a single objective optimization problem with the help of scalarizing functions and such functions may be constructed in many ways. We compare both theoretically and numerically the performance of three classification-based scalarizing functions and pay attention to how well they obey the classification information. In particular, we devote special interest to the differences the scalarizing functions have in the computational cost of guaranteeing Pareto optimality. It turns out that scalarizing functions with or without so-called augmentation terms have significant differences in this respect. We also collect a set of mostly nonlinear benchmark test problems that we use in the numerical comparisons.

[1]  Heinz Roland Weistroffer,et al.  A flexible method for nonlinear multicriteria decision-making problems , 1989, IEEE Trans. Syst. Man Cybern..

[2]  Kaisa Miettinen,et al.  Comparative evaluation of some interactive reference point-based methods for multi-objective optimisation , 1999, J. Oper. Res. Soc..

[3]  Kaisa Miettinen,et al.  Synchronous approach in interactive multiobjective optimization , 2006, Eur. J. Oper. Res..

[4]  Kaisa Miettinen,et al.  Numerical Comparison of Some Penalty-Based Constraint Handling Techniques in Genetic Algorithms , 2003, J. Glob. Optim..

[5]  A. Wierzbicki A Mathematical Basis for Satisficing Decision Making , 1982 .

[6]  Kaisa Miettinen,et al.  Integration of Two Multiobjective Optimization Methods for Nonlinear Problems , 2003, Optim. Methods Softw..

[7]  C. Hwang Multiple Objective Decision Making - Methods and Applications: A State-of-the-Art Survey , 1979 .

[8]  Lorraine R. Gardiner,et al.  A comparison of two reference point methods in multiple objective mathematical programming , 2003, Eur. J. Oper. Res..

[9]  Kaisa Miettinen,et al.  Interactive Method NIMBUS for Nondifferentiable Multiobjective Optimization Problems , 1997 .

[10]  Rafael Caballero,et al.  Lexicographic improvement of the target values in convex goal programming , 1998, Eur. J. Oper. Res..

[11]  P. Neittaanmäki,et al.  Nonsmooth Optimization: Analysis and Algorithms with Applications to Optimal Control , 1992 .

[12]  K. Miettinen,et al.  Interactive bundle-based method for nondifferentiable multiobjeective optimization: nimbus § , 1995 .

[13]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[14]  Francisco Ruiz,et al.  Determination of satisfying and efficient solutions in convex multi-objective programming , 1996 .

[15]  Masatoshi Sakawa,et al.  Interactive multiobjective decision making by the sequential proxy optimization technique: SPOT , 1982 .

[16]  Margaret M. Wiecek,et al.  Retrieval and use of the balance set in multiobjective global optimization , 1999 .

[17]  Ralph E. Steuer,et al.  An interactive weighted Tchebycheff procedure for multiple objective programming , 1983, Math. Program..

[18]  Kaisa Miettinen,et al.  On scalarizing functions in multiobjective optimization , 2002, OR Spectr..

[19]  Masatoshi Sakawa,et al.  An interactive fuzzy satisficing method for multiobjective nonconvex programming problems through floating‐point genetic algorithms , 2000 .

[20]  Andrzej P. Wierzbicki,et al.  Reference Point Approaches , 1999 .

[21]  Yacov Y. Haimes,et al.  Multiobjective Decision Making: Theory and Methodology , 1983 .

[22]  O. Larichev Cognitive validity in design of decision‐aiding techniques , 1992 .

[23]  椹木 義一,et al.  Theory of multiobjective optimization , 1985 .