A User Study of Techniques for Visualizing Structure and Connectivity in Hierarchical Datasets

Many tree layouts have been created for presenting hierarchical data. However, layouts optimized for some tasks are not adequate for others. In this paper, we focus on identifying tree structures and cross-links generated by hierarchical edge bundling. Our key contribution is the introduction of descriptive features that can be used to characterize trees in terms of their structural and connective qualities. We present a user study with 14 subjects that provides an evaluation of our approach in comparison to other popular tree visualization techniques. The results of the study indicate which techniques are more effective for visual analysis tasks that involve identifying and comparing tree and subtree structures and/or visualizing connections using hierarchical edge bundling.

[1]  S. Shapiro,et al.  An Analysis of Variance Test for Normality (Complete Samples) , 1965 .

[2]  L. Harmon,et al.  OneZoom: A Fractal Explorer for the Tree of Life , 2012, PLoS biology.

[3]  Frank Maurer,et al.  A generative layout approach for rooted tree drawings , 2013, 2013 IEEE Pacific Visualization Symposium (PacificVis).

[4]  Angus G. Forbes,et al.  MultiLayerMatrix: Visualizing Large Taxonomic Datasets , 2016, EuroVA@EuroVis.

[5]  Patrick Lambrix,et al.  Representations of molecular pathways: an evaluation of SBML, PSI MI and BioPAX , 2005, Bioinform..

[6]  Peter J. Passmore,et al.  A User Study on Curved Edges in Graph Visualization , 2012, IEEE Transactions on Visualization and Computer Graphics.

[7]  Kwan-Liu Ma,et al.  Evaluating the Effectiveness of Tree Visualization Systems for Knowledge Discovery , 2006, EuroVis.

[8]  Jeffrey Heer,et al.  D³ Data-Driven Documents , 2011, IEEE Transactions on Visualization and Computer Graphics.

[9]  J. G. Burleigh,et al.  Synthesis of phylogeny and taxonomy into a comprehensive tree of life , 2014, Proceedings of the National Academy of Sciences.

[10]  P. Legendre Species associations: the Kendall coefficient of concordance revisited , 2005 .

[11]  Danny Holten,et al.  Hierarchical Edge Bundles: Visualization of Adjacency Relations in Hierarchical Data , 2006, IEEE Transactions on Visualization and Computer Graphics.

[12]  Jeffrey Heer,et al.  SpanningAspectRatioBank Easing FunctionS ArrayIn ColorIn Date Interpolator MatrixInterpola NumObjecPointI Rectang ISchedu Parallel Pause Scheduler Sequen Transition Transitioner Transiti Tween Co DelimGraphMLCon IData JSONCon DataField DataSc Dat DataSource Data DataUtil DirtySprite LineS RectSprite , 2011 .

[13]  Hong Zhou,et al.  Edge bundling in information visualization , 2013 .

[14]  Jillian Aurisano,et al.  ReactionFlow: an interactive visualization tool for causality analysis in biological pathways , 2015, BMC Proceedings.

[15]  John Dingliana,et al.  An empirical study on the impact of edge bundling on user comprehension of graphs , 2012, AVI.

[16]  Martin Wattenberg,et al.  Google+Ripples: a native visualization of information flow , 2013, WWW '13.

[17]  Bertram Ludäscher,et al.  ProvenanceMatrix: A Visualization Tool for Multi-taxonomy Alignments , 2015, VOILA@ISWC.

[18]  Helen C. Purchase The effects of graph layout , 1998, Proceedings 1998 Australasian Computer Human Interaction Conference. OzCHI'98 (Cat. No.98EX234).

[19]  Jarke J. van Wijk,et al.  A user study on visualizing directed edges in graphs , 2009, CHI.

[20]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[21]  Angus Graeme Forbes,et al.  TimeArcs: Visualizing Fluctuations in Dynamic Networks , 2016, Comput. Graph. Forum.

[22]  Ben Shneiderman,et al.  Tree visualization with tree-maps: 2-d space-filling approach , 1992, TOGS.

[23]  Hans-Jörg Schulz,et al.  Treevis.net: A Tree Visualization Reference , 2011, IEEE Computer Graphics and Applications.

[24]  Nico M. Franz,et al.  Taxonomic Provenance: Two Influential Primate Classifications Logically Aligned , 2014, 1412.1025.

[25]  Alfred Kobsa User Experiments with Tree Visualization Systems , 2004 .

[26]  M. Sheelagh T. Carpendale,et al.  ArcTrees: Visualizing Relations in Hierarchical Data , 2005, EuroVis.

[27]  Michael J. McGuffin,et al.  Quantifying the Space-Efficiency of 2D Graphical Representations of Trees , 2010, Inf. Vis..

[28]  M. Friedman The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance , 1937 .

[29]  Angus G. Forbes,et al.  CactusTree: A tree drawing approach for hierarchical edge bundling , 2017, 2017 IEEE Pacific Visualization Symposium (PacificVis).

[30]  Christophe Hurter,et al.  Towards Unambiguous Edge Bundling: Investigating Confluent Drawings for Network Visualization , 2017, IEEE Transactions on Visualization and Computer Graphics.

[31]  Angus G. Forbes,et al.  BioLinker: Bottom-up exploration of protein interaction networks , 2017, 2017 IEEE Pacific Visualization Symposium (PacificVis).

[32]  Jean-Daniel Fekete,et al.  Task taxonomy for graph visualization , 2006, BELIV '06.

[33]  Angus Graeme Forbes,et al.  PathwayMatrix: visualizing binary relationships between proteins in biological pathways , 2015, BMC Proceedings.

[34]  Dieter Schmalstieg,et al.  Entourage: Visualizing Relationships between Biological Pathways using Contextual Subsets , 2013, IEEE Transactions on Visualization and Computer Graphics.

[35]  J. B. Kruskal,et al.  Icicle Plots: Better Displays for Hierarchical Clustering , 1983 .

[36]  Joerg Evermann,et al.  Supporting Ontology Alignment Tasks with Edge Bundling , 2013, i-Know '13.