Non-centred parameterisations for hierarchical models and data augmentation.

SUMMARY In this paper, we will compare centered and non-centered parameterisations for classes of hierarchical models. Our examples will include variance component models, random effect models, hidden Markov process models, and partially observed diffusion models. We will investigate the construction of non-centered methods by the use of state space expansion techniques, and will introduce methods for devising partially non-centered parameterisations, many of which are data-dependent.

[1]  A. Dawid Posterior expectations for large observations , 1973 .

[2]  Donald E. Knuth,et al.  TEX and METAFONT: New directions in typesetting , 1979 .

[3]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[4]  Adrian F. M. Smith,et al.  Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .

[5]  D. Rubin,et al.  Multiple Imputation for Nonresponse in Surveys , 1989 .

[6]  A. Gelfand,et al.  Nonparametric Bayesian bioassay including ordered polytomous response , 1991 .

[7]  Y. Amit On rates of convergence of stochastic relaxation for Gaussian and non-Gaussian distributions , 1991 .

[8]  N. Breslow,et al.  Approximate inference in generalized linear mixed models , 1993 .

[9]  Jun S. Liu,et al.  Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes , 1994 .

[10]  Walter R. Gilks,et al.  A Language and Program for Complex Bayesian Modelling , 1994 .

[11]  R. Kohn,et al.  On Gibbs sampling for state space models , 1994 .

[12]  Adrian F. M. Smith,et al.  Bayesian Analysis of Linear and Non‐Linear Population Models by Using the Gibbs Sampler , 1994 .

[13]  Jun S. Liu,et al.  The Collapsed Gibbs Sampler in Bayesian Computations with Applications to a Gene Regulation Problem , 1994 .

[14]  M. Pitt,et al.  Analytic Convergence Rates and Parameterization Issues for the Gibbs Sampler Applied to State Space Models , 1999 .

[15]  J. Nelder,et al.  Hierarchical Generalized Linear Models , 1996 .

[16]  G. Roberts,et al.  Updating Schemes, Correlation Structure, Blocking and Parameterization for the Gibbs Sampler , 1997 .

[17]  Xiao-Li Meng,et al.  The EM Algorithm—an Old Folk‐song Sung to a Fast New Tune , 1997 .

[18]  D. Higdon Auxiliary Variable Methods for Markov Chain Monte Carlo with Applications , 1998 .

[19]  Xiao-Li Meng,et al.  Seeking efficient data augmentation schemes via conditional and marginal augmentation , 1999 .

[20]  Gareth O. Roberts,et al.  On convergence of the EM algorithmand the Gibbs sampler , 1999, Stat. Comput..

[21]  Jun S. Liu,et al.  Parameter Expansion for Data Augmentation , 1999 .

[22]  R. Tweedie,et al.  Geometric L 2 and L 1 convergence are equivalent for reversible Markov chains , 2001, Journal of Applied Probability.

[23]  N. Shephard,et al.  Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics , 2001 .

[24]  Galin L. Jones,et al.  Honest Exploration of Intractable Probability Distributions via Markov Chain Monte Carlo , 2001 .

[25]  H. Rue Fast sampling of Gaussian Markov random fields , 2000 .

[26]  Alan E. Gelfand,et al.  A Computational Approach for Full Nonparametric Bayesian Inference Under Dirichlet Process Mixture Models , 2002 .

[27]  H. Rue,et al.  On Block Updating in Markov Random Field Models for Disease Mapping , 2002 .

[28]  Darren J. Wilkinson,et al.  Conditional simulation from highly structured Gaussian systems, with application to blocking-MCMC for the Bayesian analysis of very large linear models , 2002, Stat. Comput..

[29]  Christian P. Robert,et al.  Linking theory and practice of MCMC. , 2003 .

[30]  G. Roberts,et al.  Bayesian inference for non‐Gaussian Ornstein–Uhlenbeck stochastic volatility processes , 2004 .

[31]  Darren J. Wilkinson,et al.  A sparse matrix approach to Bayesian computation in large linear models , 2004, Comput. Stat. Data Anal..