Non-centred parameterisations for hierarchical models and data augmentation.
暂无分享,去创建一个
Gareth O. Roberts | Omiros Papaspiliopoulos | Martin Sköld | G. Roberts | O. Papaspiliopoulos | M. Sköld
[1] A. Dawid. Posterior expectations for large observations , 1973 .
[2] Donald E. Knuth,et al. TEX and METAFONT: New directions in typesetting , 1979 .
[3] W. Wong,et al. The calculation of posterior distributions by data augmentation , 1987 .
[4] Adrian F. M. Smith,et al. Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .
[5] D. Rubin,et al. Multiple Imputation for Nonresponse in Surveys , 1989 .
[6] A. Gelfand,et al. Nonparametric Bayesian bioassay including ordered polytomous response , 1991 .
[7] Y. Amit. On rates of convergence of stochastic relaxation for Gaussian and non-Gaussian distributions , 1991 .
[8] N. Breslow,et al. Approximate inference in generalized linear mixed models , 1993 .
[9] Jun S. Liu,et al. Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes , 1994 .
[10] Walter R. Gilks,et al. A Language and Program for Complex Bayesian Modelling , 1994 .
[11] R. Kohn,et al. On Gibbs sampling for state space models , 1994 .
[12] Adrian F. M. Smith,et al. Bayesian Analysis of Linear and Non‐Linear Population Models by Using the Gibbs Sampler , 1994 .
[13] Jun S. Liu,et al. The Collapsed Gibbs Sampler in Bayesian Computations with Applications to a Gene Regulation Problem , 1994 .
[14] M. Pitt,et al. Analytic Convergence Rates and Parameterization Issues for the Gibbs Sampler Applied to State Space Models , 1999 .
[15] J. Nelder,et al. Hierarchical Generalized Linear Models , 1996 .
[16] G. Roberts,et al. Updating Schemes, Correlation Structure, Blocking and Parameterization for the Gibbs Sampler , 1997 .
[17] Xiao-Li Meng,et al. The EM Algorithm—an Old Folk‐song Sung to a Fast New Tune , 1997 .
[18] D. Higdon. Auxiliary Variable Methods for Markov Chain Monte Carlo with Applications , 1998 .
[19] Xiao-Li Meng,et al. Seeking efficient data augmentation schemes via conditional and marginal augmentation , 1999 .
[20] Gareth O. Roberts,et al. On convergence of the EM algorithmand the Gibbs sampler , 1999, Stat. Comput..
[21] Jun S. Liu,et al. Parameter Expansion for Data Augmentation , 1999 .
[22] R. Tweedie,et al. Geometric L 2 and L 1 convergence are equivalent for reversible Markov chains , 2001, Journal of Applied Probability.
[23] N. Shephard,et al. Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics , 2001 .
[24] Galin L. Jones,et al. Honest Exploration of Intractable Probability Distributions via Markov Chain Monte Carlo , 2001 .
[25] H. Rue. Fast sampling of Gaussian Markov random fields , 2000 .
[26] Alan E. Gelfand,et al. A Computational Approach for Full Nonparametric Bayesian Inference Under Dirichlet Process Mixture Models , 2002 .
[27] H. Rue,et al. On Block Updating in Markov Random Field Models for Disease Mapping , 2002 .
[28] Darren J. Wilkinson,et al. Conditional simulation from highly structured Gaussian systems, with application to blocking-MCMC for the Bayesian analysis of very large linear models , 2002, Stat. Comput..
[29] Christian P. Robert,et al. Linking theory and practice of MCMC. , 2003 .
[30] G. Roberts,et al. Bayesian inference for non‐Gaussian Ornstein–Uhlenbeck stochastic volatility processes , 2004 .
[31] Darren J. Wilkinson,et al. A sparse matrix approach to Bayesian computation in large linear models , 2004, Comput. Stat. Data Anal..