Destructive negative binomial cure rate model and EM-based likelihood inference under Weibull lifetime

[1]  Narayanaswamy Balakrishnan,et al.  Likelihood inference based on EM algorithm for the destructive length-biased Poisson cure rate model with Weibull lifetime , 2018, Commun. Stat. Simul. Comput..

[2]  Narayanaswamy Balakrishnan,et al.  Expectation maximization-based likelihood inference for flexible cure rate models with Weibull lifetimes , 2016, Statistical methods in medical research.

[3]  Narayanaswamy Balakrishnan,et al.  An EM algorithm for the estimation of parameters of a flexible cure rate model with generalized gamma lifetime and model discrimination using likelihood- and information-based methods , 2015, Comput. Stat..

[4]  Gladys D. C. Barriga,et al.  A New Class of Survival Regression Models with Cure Fraction , 2014, Journal of Data Science.

[5]  N. Balakrishnan,et al.  Lognormal lifetimes and likelihood-based inference for flexible cure rate models based on COM-Poisson family , 2013, Comput. Stat. Data Anal..

[6]  Francisco Louzada,et al.  The destructive negative binomial cure rate model with a latent activation scheme. , 2013, Statistical methodology.

[7]  Josemar Rodrigues,et al.  A Bayesian destructive weighted Poisson cure rate model and an application to a cutaneous melanoma data , 2012, Statistical methods in medical research.

[8]  Narayanaswamy Balakrishnan,et al.  EM Algorithm-Based Likelihood Estimation for Some Cure Rate Models , 2012 .

[9]  Yingwei Peng,et al.  An extended cure model and model selection , 2012, Lifetime data analysis.

[10]  Narayanaswamy Balakrishnan,et al.  Destructive weighted Poisson cure rate models , 2011, Lifetime data analysis.

[11]  Narayanaswamy Balakrishnan,et al.  COM–Poisson cure rate survival models and an application to a cutaneous melanoma data , 2009 .

[12]  Bradley P Carlin,et al.  Flexible Cure Rate Modeling Under Latent Activation Schemes , 2007, Journal of the American Statistical Association.

[13]  N. Balakrishnan,et al.  Generalized gamma frailty model , 2006, Statistics in medicine.

[14]  Joseph G. Ibrahim,et al.  Cure rate models: A unified approach , 2005 .

[15]  Joseph G. Ibrahim,et al.  Bayesian Survival Analysis , 2004 .

[16]  Chin-Shang Li,et al.  Identifiability of cure models , 2001 .

[17]  Jim E. Griffin,et al.  A Bayesian Partition Model for Customer Attrition , 2001 .

[18]  J. P. Sy,et al.  Estimation in a Cox Proportional Hazards Cure Model , 2000, Biometrics.

[19]  Joseph G. Ibrahim,et al.  A New Bayesian Model For Survival Data With a Surviving Fraction , 1999 .

[20]  W. Nelson Statistical Methods for Reliability Data , 1998 .

[21]  R. Maller,et al.  Survival Analysis with Long-Term Survivors , 1996 .

[22]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[23]  A. Yakovlev,et al.  Stochastic Models of Tumor Latency and Their Biostatistical Applications , 1996 .

[24]  K. Lange A gradient algorithm locally equivalent to the EM algorithm , 1995 .

[25]  A D Tsodikov,et al.  A stochastic model of hormesis. , 1993, Mathematical biosciences.

[26]  S T Rachev,et al.  A stochastic model of radiation carcinogenesis: latent time distributions and their properties. , 1993, Mathematical biosciences.

[27]  C W Chen,et al.  A stochastic two-stage carcinogenesis model: a new approach to computing the probability of observing tumor in animal bioassays. , 1991, Mathematical biosciences.

[28]  D. Cox,et al.  Analysis of Survival Data. , 1985 .

[29]  T. Louis Finding the Observed Information Matrix When Using the EM Algorithm , 1982 .

[30]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[31]  Joseph Berkson,et al.  Survival Curve for Cancer Patients Following Treatment , 1952 .

[32]  J. Boag,et al.  Maximum Likelihood Estimates of the Proportion of Patients Cured by Cancer Therapy , 1949 .