The utilization of the double focal transformation for sparse data representation and data reconstruction
暂无分享,去创建一个
[1] Eric Verschuur,et al. Data Reconstruction via Sparse Double Focal Transformation: An Overview , 2012, IEEE Signal Processing Magazine.
[2] Eric Verschuur,et al. 4D reconstruction of wide azimuth (WAZ) data using sparse inversion of hybrid Radon transforms , 2012 .
[3] Mauricio D. Sacchi,et al. Fourier Reconstruction of Nonuniformly Sampled, Aliased Seismic Data , 2022 .
[4] Bill Dragoset. A practical approach to surface multiple attenuation , 1999 .
[5] Mauricio D. Sacchi,et al. Accurate interpolation with high-resolution time-variant Radon transforms , 2002 .
[6] A. J. Van Wijngaarden. Imaging and characterization of angle-dependent seismic reflection data. , 1998 .
[7] A. J. Berkhout,et al. Angle-dependent reflectivity by means of prestack migration , 1990 .
[8] A. Berkhout,et al. Applied Seismic Wave Theory , 1987 .
[9] A. J. Berkhout,et al. Efficient 2D and 3D shot record redatuming , 1989 .
[10] Gerrit Blacquière,et al. An r-based overview of the WRW concept , 2009 .
[11] Daniel Trad,et al. Five-dimensional interpolation: Recovering from acquisition constraints , 2009 .
[12] Umberto Spagnolini,et al. 3‐D shot continuation operator , 1996 .
[13] A. J. Berkhout,et al. Seismic processing in the inverse data space , 2006 .
[14] G. Schuster,et al. Least-squares migration of incomplete reflection data , 1999 .
[15] F. Herrmann,et al. Nonequispaced curvelet transform for seismic data reconstruction: A sparsity-promoting approach , 2010 .
[16] S. Deregowski,et al. What is DMO , 1986 .
[17] Mauricio D. Sacchi,et al. Latest views of the sparse Radon transform , 2003 .
[18] F. Herrmann,et al. Simply denoise: Wavefield reconstruction via jittered undersampling , 2008 .
[19] Philippe Herrmann,et al. De-aliased, High-Resolution Radon Transforms , 2000 .
[20] A. Gisolf,et al. Fourier reconstruction with sparse inversion , 2007 .
[21] Daniel Trad,et al. Interpolation and multiple attenuation with migration operators , 2003 .
[22] A. Kontakis,et al. Deblending Via a Hybrid Focal and Linear Radon Transform , 2015 .
[24] A. Kontakis,et al. Deblending Via Sparsity-constrained Inversion in the Focal Domain , 2014 .
[25] D. J. Verschuur,et al. Focal transformation, an imaging concept for signal restoration and noise removal , 2006 .
[26] H. Kuehl. Least-squares wave-equation migration/inversion , 2002 .
[27] P. M. van den Berg,et al. Seismic applications of acoustic reciprocity , 1993 .
[28] D. J. Verschuur,et al. High Resolution Double Focal Transformation And Its Application to Data Reconstruction , 2010 .
[29] Nizar Chemingui,et al. Azimuth moveout for 3-D prestack imaging , 1998 .
[30] Peter W. Cary,et al. Common-offset-vector Gathers: an Alternative to Cross-spreads For Wide-azimuth 3-D Surveys , 1999 .
[31] D. J. Verschuur,et al. Restoration of missing offsets by parabolic Radon transform1 , 1995 .
[32] Mostafa Naghizadeh,et al. Seismic data interpolation and denoising in the frequency-wavenumber domain , 2012 .
[33] A. J. Berkhout. Pushing the limits of seismic imaging, Part II: Integration of prestack migration, velocity estimation, and AVO analysis , 1997 .
[34] Juefu Wang,et al. Seismic data interpolation by greedy local Radon transform , 2010 .
[35] Umberto Spagnolini,et al. 2-D continuation operators and their applications , 1996 .
[36] H. Kutscha. The double focal transformation and its application to data reconstruction , 2012 .
[38] Andreas Klaedtke,et al. Anti-alias Anti-leakage Fourier Transform , 2009 .
[39] Dries Gisolf. The Principles of Quantitative Acoustical Imaging , 2010 .
[40] Yu Zhang,et al. Antileakage Fourier transform for seismic data regularization , 2005 .
[41] R. Romijn. Reconstruction of seismic data using the Focal Transformation , 2004 .
[42] Mauricio D. Sacchi,et al. Beyond alias hierarchical scale curvelet interpolation of regularly and irregularly sampled seismic data , 2010 .
[43] C. O. H. Hindriks,et al. Reconstruction of band‐limited signals, irregularly sampled along one spatial direction , 1999 .
[44] Michael P. Friedlander,et al. Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..
[45] A. Gisolf,et al. Fourier reconstruction of marine-streamer data in four spatial coordinates , 2006 .