Hydrodynamics and Cross-Shore Sediment Transport in the Swash-Zone of Natural Beaches: A Review

The high velocities and suspended sediment concentrations in the swash-zone mean that the sediment transport processes in this zone are likely to be important contributors to shoreline erosion and accretion. However, studies of hydrodynamics and sediment transport in the swash-zone have been relatively few compared with those in the rest of the nearshore zone. Studies of swash-zone hydrodynamics have included run-up measurements using electrical resistance and capacitance devices, as well as cameras. Run-up has been modelled mostly using the non-linear shallow water equations. Sediment transport studies in the swash-zone require instrumentation which can unobtrusively obtain measurements close to the bed, therefore, very few data exist so far. Studies have been performed in incident –wave dominated relatively low energy conditions on steep reflective beaches, measuring individual swash events, and the sediment transport processes modelled with reasonable success on the uprush only. Studies made on high energy dissipative beaches have found the swash to be dominated by oscillations at infragravity frequencies, with suspended sediment concentrations being 3 to 9 times higher in the swash-zone than the inner surf-zone. The added complication of groundwater influx and outflux is also recognised as an essential area of study, whose processes should be included in any model of the swash-zone sediment transport.

[1]  P. Nielsen Coastal Groundwater Dynamics , 1997 .

[2]  Jan S. Ribberink,et al.  Sheet flow and suspension of sand in oscillatory boundary layers , 1995 .

[3]  H. N. Southgate,et al.  INTERCOMPARISON OF COASTAL PROFILE MODELS , 1993 .

[4]  B. G. Ruessink,et al.  Observations of swash under highly dissipative conditions , 1998 .

[5]  Bruce Hegge,et al.  Groundwater-Table Responses to Wave Run-up: An Experimental Study From Western Australia , 1991 .

[6]  D. A. Barry,et al.  Beach water table fluctuations due to wave run‐up: Capillarity effects , 1997 .

[7]  SWASH DYNAMICS UNDER OBLIQUELY INCIDENT WAVES , 1995 .

[8]  D. Huntley,et al.  A universal form for shoreline run‐up spectra? , 1977 .

[9]  P. Nielsen Coastal Bottom Boundary Layers and Sediment Transport , 1992 .

[10]  A. Bowen,et al.  Field measurements of the vertical structure of suspended sediment , 1991 .

[11]  Ian L Turner,et al.  Tides, Waves and the Super-elevation of Groundwater at the Coast , 1997 .

[12]  Kenneth C. Wilson,et al.  Analysis of Bed‐Load Motion at High Shear Stress , 1987 .

[13]  R. Sternberg,et al.  Infragravity Driven Suspended Sediment Transport in the Swash, Inner and Outer-Surf Zone , 1991 .

[14]  Nobuhisa Kobayashi,et al.  WAVE REFLECTION AND RUN-UP ON ROUGH SLOPES , 1987 .

[15]  D. Horn,et al.  Swash zone sediment transport modes , 1994 .

[16]  Masaur Mizuguchi SWASH ON A NATURAL BEACH , 1984 .

[17]  Peter D. Thorne,et al.  The measurement of acoustic noise generated by moving artificial sediments , 1985 .

[18]  Paul Russell,et al.  Mechanisms for beach erosion during storms , 1993 .

[19]  R. Sternberg,et al.  CHAPTER ONE HUNDRED TWENTY Field Investigations of Suspended Sediment Transport in the Nearshore Zone , 2010 .

[20]  M. Hughes Application of a Non-Linear Shallow Water Theory to Swash Following Bore Collapse on a Sandy Beach , 1992 .

[21]  Peter Nielsen,et al.  Wave setup and runup: An integrated approach , 1989 .

[22]  Robert A. Holman,et al.  Setup and swash on a natural beach , 1985 .

[23]  Steve Elgar,et al.  Swash on a gently sloping beach , 1995 .

[24]  M. Miche Le pouvoir réfléchissant des ouvrages maritimes exposés à l'action de la houle , 1951 .

[25]  Bradley D. Johnson,et al.  NONLINEAR TIME-AVERAGED MODEL IN SURF AND SWASH ZONES , 1999 .

[26]  J. Hardisty,et al.  A calibration of the Bagnold beach equation , 1984 .

[27]  Britt Raubenheimer,et al.  Observations and predictions of run‐up , 1996 .

[28]  P. Nielsen Wave setup: A field study , 1988 .

[29]  David A. Huntley,et al.  Long‐period waves on a natural beach , 1976 .

[30]  R. Bagnold,et al.  The flow of cohesionless grains in fluids , 1956, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[31]  Hajime Mase,et al.  Spectral characteristics of random wave run-up , 1988 .

[32]  R. Sternberg,et al.  Continuous Measurements of Suspended Sediment , 1989 .

[33]  R. Dean,et al.  TRANSFORMATION OF RANDOM BREAKING WAVES ON SURF BEAT , 1986 .

[34]  J. A. Battjes,et al.  MATHEMATICAL MODELLING OF WATER-QUALITY FOR LONG TIME PERIODS , 1984 .

[35]  E. Waddell Dynamics of Swash and Implication to Beach Response. , 1973 .

[36]  M. Gourlay Wave set-up, wave run-up and beach water table : interaction between surf zone hydraulics and groundwater hydraulics , 1992 .

[37]  A. Baird,et al.  Monitoring and Modelling Groundwater Behaviour Sandy Beaches , 1996 .

[38]  G. Masselink Group bound long waves as a source of infragravity energy in the surf zone , 1995 .

[39]  M. Quick Onshore-offshore sediment transport on beaches , 1991 .

[40]  R. Holman Infragravity energy in the surf zone , 1981 .

[41]  M. J. Tucker,et al.  Surf beats: sea waves of 1 to 5 min. period , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[42]  N. Kobayashi,et al.  Obliquely incident irregular waves in surf and swash zones , 1996 .

[43]  K. T. Holland,et al.  Runup kinematics on a natural beach , 1995 .

[44]  P. Thorne Laboratory and marine measurements on the acoustic detection of sediment transport , 1986 .

[45]  Daniel Conley,et al.  Ventilated oscillatory boundary layers , 1993, Journal of Fluid Mechanics.

[46]  J. C. Freeman,et al.  Wave Breakers on a Beach and Surges in a Dry Bed , 1964 .

[47]  Ian L Turner Simulating the influence of groundwater seepage on sediment transported by the sweep of the swash zone across macro-tidal beaches , 1995 .

[48]  A. Bowen,et al.  Observations of surf beat forcing and dissipation , 2002 .

[49]  W. E. Stewart,et al.  HEAT, MASS, AND MOMENTUM TRANSFER FOR FLOW OVER A FLAT PLATE WITH BLOWING OR SUCTION , 1954 .

[50]  R. Brander,et al.  FLOW VELOCITY AND SEDIMENT TRANSPORT IN THE SWASH ZONE OF A STEEP BEACH , 1997 .

[51]  P. Thorne,et al.  Acoustic detection of seabed gravel movement in turbulent tidal currents , 1984 .

[52]  D. Huntley,et al.  Long Wave Generation by a Time-Varying Breakpoint , 1982 .

[53]  Michael G. Hughes,et al.  Friction factors for wave uprush , 1995 .

[54]  A. Al-Salem Sediment transport in oscillatory boundary layers under sheet-flow conditions , 1993 .

[55]  M. Bradshaw Bores and Swash on Natural Beaches. , 1982 .

[56]  R. Sternberg,et al.  THE ROLE OF SUSPENDED SEDIMENT IN SHORE-NORMAL BEACH PROFILE CHANGES , 1984 .

[57]  R. Sternberg,et al.  Measurements of high concentration suspended sediments using the optical backscatterance sensor , 1992 .

[58]  J. A. Battjes Computation of set-up, longshore currents, run-up and overtopping due to wind-generated waves , 1974 .

[59]  C. Martin Effect of a Porous Sand Bed on Incipient Sediment Motion , 1970 .

[60]  Nobuhisa Kobayashi,et al.  Wave transformation and swash oscillation on gentle and steep slopes , 1989 .

[61]  K. Black,et al.  Suspended Sediment Load at Three Time Scales , 1991 .

[62]  A. D. Heathershaw,et al.  Sea-bed noises reveal role of turbulent bursting phenomenon in sediment transport by tidal currents , 1985, Nature.

[63]  A. R. Packwood,et al.  The influence of beach porosity on wave uprush and backwash , 1983 .

[64]  R. E. Meyer,et al.  Climb of a bore on a beach Part 3. Run-up , 1963, Journal of Fluid Mechanics.

[65]  A. Sallenger,et al.  SWASH ZONE MORPHODYNAMICS AND SEDIMENT TRANSPORT PROCESSES , 1999 .

[66]  H. D. Niemeyer,et al.  SITE INVESTIGATION ON SAND CONCENTRATION IN THE SHEETFLOW LAYER , 1991 .

[67]  A. Bowen,et al.  Nearshore Sediment Flux and Bottom Boundary Dynamics the Canadian Coastal Sediment Transport Programme (C-Coast) , 1991 .

[68]  P. Nielsen,et al.  WATERTABLE OVERHEIGHT DUE TO WAVE RUNUP ON A SANDY BEACH , 1995 .

[69]  J. Hardisty An Assessment and Calibration of Formulations for Bagnold's Bedload Equation , 1983 .

[70]  D. Horn Beach research in the 1990s , 1997 .

[71]  N. Ericksen Measurement of tide induced changes to water table profiles in coarse and fine sand beaches along Pegasus Bay, Canterbury , 1970 .

[72]  A. Baird,et al.  MECHANISMS OF BEACH GROUND WATER AND SWASH INTERACTION , 1997 .

[73]  E. Waddell Swash—Groundwater—Beach Profile Interactions , 1987 .

[74]  P. Nielsen,et al.  Wave Runup Distributions on Natural Beaches , 1991 .

[75]  Beach Foreshore Response to Long-Period Waves , 1984 .

[76]  R. Holman,et al.  Longshore structure of infragravity wave motions , 1984 .

[77]  Bradley D. Johnson,et al.  Probability distribution of surface elevation in surf and swash zones , 1998 .

[78]  Gerhard Masselink,et al.  Swash infiltration‐exfiltration and sediment transport , 1998 .

[79]  James A. Bailard,et al.  An energetics total load sediment transport model for a plane sloping beach , 1981 .

[80]  D. H. Peregrine,et al.  Surf and run-up on a beach: a uniform bore , 1979, Journal of Fluid Mechanics.

[81]  M. Longuet-Higgins,et al.  Radiation stresses in water waves; a physical discussion, with applications , 1964 .

[82]  Ian L Turner Monitoring groundwater dynamics in the littoral zone at seasonal, storm, tide and swash frequencies , 1998 .

[83]  Ramon Cabrera,et al.  New Acoustic Meter for Measuring 3D Laboratory Flows , 1994 .

[84]  D. J. Clarke,et al.  Semi-diurnal variation in beachface aggradation and degradation , 1988 .

[85]  Tom E. Baldock,et al.  Low frequency swash motion induced by wave grouping , 1997 .

[86]  N. Kobayashi,et al.  Irregular Wave Reflection and Run‐Up on Rough Impermeable Slopes , 1990 .

[87]  A. N. Strahler Tidal Cycle of Changes in an Equilibrium Beach, Sandy Hook, New Jersey , 1966, The Journal of Geology.

[88]  Y. Kawata,et al.  THE IN SITU MEASUREMENTS OF SEDIMENT TRANSPORT AND BOTTOM TOPOGRAPHY CHANGES , 1991 .

[89]  T. Aagaard,et al.  Digitization of Wave Run-Up Using Video Records , 1989 .

[90]  Gerhard Masselink,et al.  Field investigation of sediment transport in the swash zone , 1998 .

[91]  John P. Downing,et al.  New instrumentation for the investigation of sediment suspension processes in the shallow marine environment , 1981 .

[92]  Edward B. Thornton,et al.  Wave set-up on a natural beach , 1981 .

[93]  D. Huntley,et al.  Direct Measurement of Suspended Sediment Transport , 1987 .

[94]  R. Sternberg,et al.  Suspended sediment transport in the surf zone: Response to cross-shore infragravity motion , 1988 .

[95]  M. S. Longuet-Higgins,et al.  Eulerian and Lagrangian aspects of surface waves , 1986, Journal of Fluid Mechanics.

[96]  R. Sternberg,et al.  A fiber optic sensor for monitoring suspended sediment , 1992 .

[97]  J. R. Duncan The effects of water table and tide cycle on swash-backwash sediment distribution and beach profile development , 1964 .

[98]  P. Osborne,et al.  Sand re-suspension events in a high energy infragravity swash zone , 1999 .

[99]  Ian L Turner,et al.  Rapid water table fluctuations within the beach face: Implications for swash zone sediment mobility? , 1997 .

[100]  Robert A. Holman,et al.  Extreme value statistics for wave run-up on a natural beach , 1986 .

[101]  Edward B. Thornton,et al.  Swash oscillations on a natural beach , 1982 .

[102]  Jack Hardisty,et al.  Tidal asymmetry in suspended sand transport on a macrotidal intermediate beach , 1993 .

[103]  Ian L Turner Water table outcropping on macro-tidal beaches: A simulation model , 1993 .