Is a Real Cyclogenesis Case Explained by Generalized Linear Baroclinic Instability

Abstract Midlatitude cyclogenesis is currently often explained as resulting from the baroclinic instability of a jet flow. The present formulation of the theory, essentially resulting from the deep revision performed by Farrell, associates incipient cyclones with amplifying singular vectors of a linear propagator operator obtained by linearizing the relevant model equations (balanced or not) about a trajectory representing the jet flow alone. A major difficulty for transposing the theoretical framework to a real case, and then opening the way to quantitative verifications of the theory, is this separation of an actual realization of cyclogenesis into the cyclone as a perturbation on one side and its environment on the other. A methodology to obtain such a separation in a reasonably objective and dynamically consistent way is presented. It enables obtaining two diabatic primitive equation solutions about the 26 December 1999 intense storm, one that has the event and the other that has most of the character...

[1]  J. Katzfey,et al.  The Life Cycle of a Cyclone Wave in the Southern Hemisphere. Part I: Eddy Energy Budget. , 1991 .

[2]  M. Shapiro,et al.  The life cycles of extratropical cyclones , 1999 .

[3]  Leonard A. Smith,et al.  Linear Regime Duration: Is 24 Hours a Long Time in Synoptic Weather Forecasting? , 2001 .

[4]  F. Sanders,et al.  Synoptic-Dynamic Climatology of the “Bomb” , 1980 .

[5]  B. Hoskins,et al.  The Life Cycles of Some Nonlinear Baroclinic Waves , 1978 .

[6]  G. Rivière,et al.  Predicting areas of sustainable error growth in quasigeostrophic flows using perturbation alignment properties , 2004 .

[7]  J. Holton An introduction to dynamic meteorology , 2004 .

[8]  B. Hoskins,et al.  Moist singular vectors and the predictability of some high impact European cyclones , 2005 .

[9]  Roberto Buizza,et al.  The nature of singular vector growth and structure , 2000 .

[10]  Jan Barkmeijer Local skill prediction for the ECMWF model using adjoint techniques , 1993 .

[11]  J. G. Charney,et al.  THE DYNAMICS OF LONG WAVES IN A BAROCLINIC WESTERLY CURRENT , 1947 .

[12]  W. Randel,et al.  The observed life cycle of a baroclinic instability , 1985 .

[13]  Ronald M. Errico,et al.  Interpretations of the total energy and rotational energy norms applied to determination of singular vectors , 2000 .

[14]  K. Emanuel,et al.  Potential Vorticity Diagnostics of Cyclogenesis , 1991 .

[15]  A. Joly The Stability of Steady Fronts and the Adjoint Method: Nonmodal Frontal Waves , 1995 .

[16]  T. Palmer,et al.  Singular Vectors, Metrics, and Adaptive Observations. , 1998 .

[17]  B. Farrell Transient Growth of Damped Baroclinic Waves , 1985 .

[18]  Brian F. Farrell,et al.  Optimal Excitation of Baroclinic Waves , 1989 .

[19]  B. Hoskins,et al.  Baroclinic Instability on the Sphere: Normal Modes of the Primitive and Quasi-Geostrophic Equations , 1976 .

[20]  E. T. Eady,et al.  Long Waves and Cyclone Waves , 1949 .

[21]  E. Palmén The Aerology of Extratropical Disturbances , 1951 .

[22]  P. Klein,et al.  Perturbation growth in terms of barotropic alignment properties , 2003 .

[23]  Jian-Wen Bao,et al.  A Case Study of Cyclogenesis Using a Model Hierarchy , 1996 .

[24]  J. Pedlosky Geophysical Fluid Dynamics , 1979 .

[25]  Heini Wernli,et al.  Dynamical aspects of the life cycle of the winter storm ‘Lothar’ (24–26 December 1999) , 2002 .

[26]  A. E. Gill Atmosphere-Ocean Dynamics , 1982 .

[27]  B. Hoskins,et al.  Simple Initial Value Problems and Mechanisms for Baroclinic Growth , 2001 .

[28]  C. Bishop On the behaviour of baroclinic waves undergoing horizontal deformation. I: The ‘RT’ phase diagram , 1993 .

[29]  J. Frederiksen Instability of the Three-Dimensional Distorted Stratospheric Polar Vortex at the Onset of the Sudden Warming , 1982 .

[30]  R. Grotjahn,et al.  Diagnosing cyclogenesis by partitioning energy and potential enstrophy in a linear quasi-geostrophic model , 2001 .

[31]  I. Orlanski,et al.  Stages in the energetics of baroclinic systems , 1995 .

[32]  Brian F. Farrell,et al.  Stochastic dynamics of the midlatitude atmospheric jet , 1995 .

[33]  Roberto Buizza,et al.  Targeting Observations Using Singular Vectors , 1999 .

[34]  A. Joly,et al.  Warm and occluded fronts in two‐dimensional moist baroclinic instability , 1989 .

[35]  Philippe Arbogast,et al.  Frontal‐wave development by interaction between a front and a cyclone: Application to FASTEX IOP 17 , 2004 .

[36]  G. Hakim Role of Nonmodal Growth and Nonlinearity in Cyclogenesis Initial-Value Problems , 2000 .

[37]  C. Snyder,et al.  Cyclogenetic Perturbations and Analysis Errors Decomposed into Singular Vectors , 2005 .

[38]  A. Joly,et al.  The Stability of Time-Dependent Flows: An Application to Fronts in Developing Baroclinic Waves , 1991 .

[39]  Roberto Buizza,et al.  Tropical singular vectors computed with linearized diabatic physics , 2001 .

[40]  Gwendal Rivière,et al.  Role of the Low-Frequency Deformation Field on the Explosive Growth of Extratropical Cyclones at the Jet Exit. Part I: Barotropic Critical Region , 2006 .

[41]  Roberto Buizza,et al.  The Singular-Vector Structure of the Atmospheric Global Circulation , 1995 .

[42]  Edward N. Lorenz,et al.  Available Potential Energy and the Maintenance of the General Circulation , 1955 .

[43]  R. C. Sutcliffe,et al.  A contribution to the problem of development , 1947 .

[44]  O. Talagrand,et al.  Short-range evolution of small perturbations in a barotropic model , 1988 .

[45]  S. Petterssen a General Survey of Factors Influencing Development at Sea Level. , 1955 .

[46]  Z. Kuang The Norm Dependence of Singular Vectors. , 2004 .

[47]  Philippe Courtier,et al.  Four‐Dimensional Assimilation In the Presence of Baroclinic Instability , 1992 .

[48]  Sylvie Malardel,et al.  Adaptive Observations: A Feasibility Study , 1999 .

[49]  Roberto Buizza,et al.  Computation of optimal unstable structures for a numerical weather prediction model , 1993 .

[50]  Brian F. Farrell,et al.  Advances in Cyclogenesis Theory: Toward a Generalized Theory of Baroclinic Development , 1999 .

[51]  A. Joly,et al.  Some aspects of the sensitivity of idealized frontal waves , 1996 .

[52]  Brian F. Farrell,et al.  Generalized Stability Theory. Part II: Nonautonomous Operators , 1996 .

[53]  Isaac M. Held,et al.  Baroclinic wave packets in models and observations , 1993 .