Semantic Analysis and Text Summarization in SocioTechnical Systems

In this chapter, the authors present the results of the development the text-mining methodology for increasing the reliability of the functioning of Socio-technical System (STS). Taking into account revealed strengths and weaknesses of Discriminant and Probabilistic approaches of Latent Semantic Relations analysis in of the abstracting and summarization projection, the Methodology of Two-level Single Document Summarization was developed. The Methodology assumes the following elements of novelty: based on obtaining a multi-level topical framework of the document (abstracting); uses the synergy effect of consistent usage the combination of two approaches for identification of conceptually significant elements of the text (summarization). The examples demonstrating the basic workability of proposed Methodology were presented. Such approaches should help human to increase the quality of supporting the decision-making processes of STS in real time.

[1]  Kan Li,et al.  The Similarity Measure Based on LDA for Automatic Summarization , 2012 .

[2]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[3]  Wei-Wen Wu,et al.  Data mining for exploring hidden patterns between KM and its performance , 2010, Knowl. Based Syst..

[4]  George D. C. Cavalcanti,et al.  Assessing sentence scoring techniques for extractive text summarization , 2013, Expert Syst. Appl..

[5]  David M. Blei,et al.  Probabilistic topic models , 2012, Commun. ACM.

[6]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[7]  Kulthida Tuamsuk,et al.  Data Mining and Its Applications for Knowledge Management: A Literature Review from 2007 to 2012 , 2012, ArXiv.

[8]  Nina Rizun,et al.  Development and Research of the Text Messages Semantic Clustering Methodology , 2016, 2016 Third European Network Intelligence Conference (ENIC).

[9]  Vishal Gupta,et al.  Recent automatic text summarization techniques: a survey , 2016, Artificial Intelligence Review.

[10]  Dong-Ho Lee,et al.  FoDoSu: Multi-document summarization exploiting semantic analysis based on social Folksonomy , 2015, Inf. Process. Manag..

[11]  Claire McInerney,et al.  Knowledge management and the dynamic nature of knowledge , 2002, J. Assoc. Inf. Sci. Technol..

[12]  Sharvari Govilkar,et al.  Comparative Study of Text Summarization Methods , 2014 .

[13]  Shu-Hsien Liao,et al.  Mining customer knowledge for product line and brand extension in retailing , 2008, Expert Syst. Appl..

[14]  T. Landauer,et al.  Indexing by Latent Semantic Analysis , 1990 .

[15]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[16]  Бурая Ксения Игоревна,et al.  Автоматическая суммаризация веб-форумов как источников профессионально значимой информации , 2016 .

[17]  Dunja Mladenic,et al.  Modeling Knowledge Worker Activity , 2010, WAPA.

[18]  Duen-Ren Liu,et al.  Mining group-based knowledge flows for sharing task knowledge , 2011, Decis. Support Syst..

[19]  Yueting Zhuang,et al.  Topic aspect-oriented summarization via group selection , 2015, Neurocomputing.

[20]  Francis R. Bach,et al.  Online Learning for Latent Dirichlet Allocation , 2010, NIPS.

[21]  S. T. Dumais,et al.  Using latent semantic analysis to improve access to textual information , 1988, CHI '88.

[22]  Ani Nenkova,et al.  A Survey of Text Summarization Techniques , 2012, Mining Text Data.

[23]  Fei Wang,et al.  Investigation on Technology Systems for Knowledge Management , 2008, 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing.

[24]  Marko Grobelnik,et al.  Using task context to achieve effective information delivery , 2009, CIAO '09.

[25]  Hilary Cheng,et al.  An ontology-based business intelligence application in a financial knowledge management system , 2009, Expert Syst. Appl..

[26]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[27]  Martti Juhola,et al.  Stemming and lemmatization in the clustering of finnish text documents , 2004, CIKM '04.

[28]  Khalid Alfalqi,et al.  A Survey of Topic Modeling in Text Mining , 2015 .

[29]  Hector G. Ceballos,et al.  A multiagent knowledge and information network approach for managing research assets , 2010, Expert Syst. Appl..

[30]  John Charles Baker,et al.  Pace: A Test of Authorship Based on the Rate at which New Words Enter an Author's Text , 1988 .

[31]  Xin Liu,et al.  Generic text summarization using relevance measure and latent semantic analysis , 2001, SIGIR '01.

[32]  Yaron Denekamp,et al.  Learning the Context of a Clinical Process , 2009, Business Process Management Workshops.

[33]  Riitta Alkula From Plain Character Strings to Meaningful Words: Producing Better Full Text Databases for Inflectional and Compounding Languages with Morphological Analysis Software , 2004, Information Retrieval.

[34]  Shu-Hsien Liao,et al.  Knowledge management technologies and applications - literature review from 1995 to 2002 , 2003, Expert Syst. Appl..

[35]  Xingsen Li,et al.  Knowledge cultivating for intelligent decision making in small & middle businesses , 2010, ICCS.

[36]  F. Jelinek,et al.  Perplexity—a measure of the difficulty of speech recognition tasks , 1977 .

[37]  Ferda Nur Alpaslan,et al.  Text summarization using Latent Semantic Analysis , 2011, J. Inf. Sci..

[38]  Kurt Hornik,et al.  Text Mining Infrastructure in R , 2008 .

[39]  Y. Li,et al.  A framework for early warning and proactive control systems in food supply chain networks , 2010, Comput. Ind..