Asymptotics of Some Classes of Higher-Order Difference Equations

We present some methods for finding asymptotics of some classes of nonlinear higher-order difference equations. Among others, we confirm a conjecture posed by S. Stevic (2005). Monotonous solutions of the equation yn=A

[1]  Stevo Stević On the Recursive Sequence xn+1=A+xnp/xn-1p , 2007 .

[2]  S. Stević On monotone solutions of some classes of difference equations , 2006 .

[3]  Lothar Berg,et al.  Inclusion Theorems for Non-linear Difference Equations with Applications , 2004 .

[4]  Lothar Berg,et al.  On the Asymptotics of Nonlinear Difference Equations , 2002 .

[5]  S. Stević ON STABILITY RESULTS FOR A NEW APPROXIMATING FIXED POINTS ITERATION PROCESS , 2001 .

[6]  Taixiang Sun,et al.  Global asymptotic stability of a family of difference equations , 2005 .

[7]  Stevo Stević ON THE RECURSIVE SEQUENCE $x_{n+1} = \dfrac{\alpha + \beta x_{n-k}}{f(x_n,...,x_{n-k+1})}$ , 2005 .

[8]  S. Stević Asymptotic behavior of solutions of a nonlinear difference equation with continuous argument , 2004 .

[9]  G. Ladas Open problems and conjectures: A problem from the putnam exam , 1998 .

[10]  Stevo Stevic,et al.  Existence of nontrivial solutions of a rational difference equation , 2007, Appl. Math. Lett..

[11]  Stevo Stević Short Note: A Note on Periodic Character of a Difference Equation , 2004 .

[12]  George L. Karakostas Asymptotic 2–periodic difference equations with diagonally self–invertible responses , 2000 .

[13]  V. Kocić,et al.  Global Behavior of Nonlinear Difference Equations of Higher Order with Applications , 1993 .

[14]  Lothar Berg,et al.  Asymptotische Darstellungen und Entwicklungen , 1968 .

[15]  Stevo Stevic,et al.  The global attractivity of the rational difference equation yn = (yn-k + yn-m) / (1 + yn-k yn-m) , 2007, Appl. Math. Lett..

[16]  Stevo Stević,et al.  On the Recursive Sequence xn=1 , 2007 .

[17]  Lothar Berg,et al.  On a Class of Generalized Autoconvolution Equations of the Third Kind , 2005 .

[18]  T. Sun,et al.  On boundedness of the solutions of the difference equation xn , 2006 .

[19]  S. Stević Nontrivial solutions of a higher-order rational difference equation , 2008 .

[20]  Stevo Stevic,et al.  On positive solutions of a (k+1)th order difference equation , 2006, Appl. Math. Lett..

[21]  Stevo Stević,et al.  Global stability and asymptotics of some classes of rational difference equations , 2006 .

[22]  Stevo Stević,et al.  Asymptotic behavior of a sequence defined by iteration with applications , 2002 .

[23]  H. M. El-Owaidy,et al.  On asymptotic behaviour of the difference equation xn+1=α+(xn-k/xn) , 2004, Appl. Math. Comput..

[24]  Xiaofan Yang,et al.  Global asymptotic stability in a class of generalized Putnam equations , 2006 .

[25]  Stevo Stevi´c,et al.  ON THE RECURSIVE SEQUENCE $x_{n+1}=\displaystyle\frac{A}{\prod^k_{i=0}x_{n-i}}+\displaystyle\frac{1}{\prod^{2(k+1)}_{j=k+2}x_{n-j}}$ , 2003 .

[26]  Sin-Ei Takahasi,et al.  ON CONVERGENCE OF A RECURSIVE SEQUENCE $x_{n+1} = f(x_{n-1}, x_n)$ , 2006 .

[27]  Kenneth S. Berenhaut,et al.  The behaviour of the positive solutions of the difference equation , 2006 .

[28]  Lothar Berg,et al.  Corrigendum: Corrections to ‘Inclusion theorems for non-linear difference equations with applications’ , 2005 .

[29]  G. Karakostas,et al.  Convergence of a difference equation via the full limiting sequences method , 1993 .

[30]  Stevo Stević,et al.  On the recursive sequence $$x_{n + 1} = \alpha + \frac{{x_{n - 1}^p }}{{x_n^p }}$$ , 2005 .

[31]  Kenneth S. Berenhaut,et al.  The difference equation xn+1=α+xn−k∑i=0k−1cixn−i has solutions converging to zero , 2007 .

[32]  Alaa E. Hamza,et al.  On the recursive sequence xn+1= , 2008, Comput. Math. Appl..

[33]  JOHN D. FOLEY,et al.  The global attractivity of the rational difference equation yn =1 , 2022 .

[34]  W. Kosmala,et al.  More on the Difference Equation y n + 1 = ( p + y n −1 )/( qy n + y n −1 ) , 2002 .

[35]  Robert M. May,et al.  GLOBAL BEHAVIOR OF NONLINEAR DIFFERENCE EQUATIONS OF HIGHER ORDER WITH APPLICATIONS (Mathematics and its Applications 256) , 1995 .

[36]  K. Berenhaut,et al.  A note on the difference equation , 2005 .

[37]  Kenneth S. Berenhaut,et al.  The global attractivity of the rational difference equation _{}=1+\frac{_{-}}_{-} , 2007 .

[38]  A. M. Ahmed,et al.  On asymptotic behaviour of the difference equation $$X_{N + 1} = \alpha + \frac{{X_{N - 1} ^P }}{{X_N ^P }}$$ , 2003 .

[39]  Tim Nesemann,et al.  Global Asymptotic Stability in Some Discrete Dynamical Systems , 1999 .

[40]  Wan-Tong Li,et al.  On the recursive sequencexn+1=α-(xn/xn−1) , 2005 .

[41]  G. Ladas,et al.  A Global Convergence Result with Applications to Periodic Solutions , 2000 .

[42]  K. Berenhaut,et al.  The difference equation xn + 1 = α + xn − k ∑ k − 1 i = 0 cixn − i has solutions converging to zero , 2006 .