Recent Progress on Mesoporous Carbon Materials for Advanced Energy Conversion and Storage

Mesoporous carbon materials have attracted much attention during the past two decades in fields such as energy conversion and storage, gas storage, and medical science. In this progress report, the recent advances of mesoporous-carbon-based nanomaterials are presented for fuel cells, lithium batteries, and supercapacitors. A brief discussion of the recent development of synthetic methodologies of mesoporous-carbon-based materials is first introduced. Detailed descriptions of the electrochemical properties are stated in each of mesoporous-carbon-based materials. Furthermore, comparisons of different mesoporous carbon materials in the same application field are summarized in a table, and some conclusions and disciplines are stated, which may be useful to guide the future studies. Comments on the challenges and perspectives of mesoporous-carbon-based materials are proposed for further development.

[1]  S. Hirano,et al.  Mesoporous TiO(2)-Sn@C core-shell microspheres for Li-ion batteries. , 2013, Chemical communications.

[2]  Guangshuai Han,et al.  Highly ordered mesoporous phenol–formaldehyde carbon as supercapacitor electrode material , 2013 .

[3]  Wun Hu Sie,et al.  Heat-treated platinum nanoparticles embedded in nitrogen-doped ordered mesoporous carbons: Synthesis , 2011 .

[4]  Chunzhong Li,et al.  A green and high energy density asymmetric supercapacitor based on ultrathin MnO2 nanostructures and functional mesoporous carbon nanotube electrodes. , 2012, Nanoscale.

[5]  Huanlei Wang,et al.  Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors , 2013 .

[6]  Hiroaki Sai,et al.  Block copolymer directed one-pot simple synthesis of L10-phase FePt nanoparticles inside ordered mesoporous aluminosilicate/carbon composites. , 2011, ACS nano.

[7]  R. Ruoff,et al.  Carbon-Based Supercapacitors Produced by Activation of Graphene , 2011, Science.

[8]  L. Nazar,et al.  Hydrothermal Synthesis and Electrochemical Properties of Li2CoSiO4/C Nanospheres , 2013 .

[9]  S. Chen,et al.  Stepwise synthesis, characterization, and electrochemical properties of ordered mesoporous carbons containing well-dispersed Pt nanoparticles using a functionalized template route , 2011 .

[10]  Yu-Guo Guo,et al.  Tuning the porous structure of carbon hosts for loading sulfur toward long lifespan cathode materials for Li–S batteries , 2013 .

[11]  Jong-Ho Choi,et al.  Ordered Porous Carbons with Tunable Pore Sizes as Catalyst Supports in Direct Methanol Fuel Cell , 2004 .

[12]  Q. Xie,et al.  Facile Synthesis of Manganese‐Oxide‐Containing Mesoporous Nitrogen‐Doped Carbon for Efficient Oxygen Reduction , 2012 .

[13]  Chunsheng Wang,et al.  Electrochemical Performance of Porous Carbon/Tin Composite Anodes for Sodium‐Ion and Lithium‐Ion Batteries , 2013 .

[14]  Andrew J. Binder,et al.  Controlled synthesis of mesoporous carbon nanostructures via a "silica-assisted" strategy. , 2013, Nano letters.

[15]  D. Zhao,et al.  A low-concentration hydrothermal synthesis of biocompatible ordered mesoporous carbon nanospheres with tunable and uniform size. , 2010, Angewandte Chemie.

[16]  D. Zhao,et al.  A curing agent method to synthesize ordered mesoporous carbons from linear novolac phenolic resin polymers , 2009 .

[17]  M. Jaroniec,et al.  Electrochemically active nitrogen-enriched nanocarbons with well-defined morphology synthesized by pyrolysis of self-assembled block copolymer. , 2012, Journal of the American Chemical Society.

[18]  YanagisawaTsuneo,et al.  The Preparation of Alkyltriinethylaininonium–Kaneinite Complexes and Their Conversion to Microporous Materials , 2006 .

[19]  W. Mustain,et al.  Effects of Pore Structure in Nitrogen Functionalized Mesoporous Carbon on Oxygen Reduction Reaction Activity of Platinum Nanoparticles , 2013 .

[20]  Y. Rhee,et al.  Crossover of formic acid through Nafion® membranes , 2003 .

[21]  Lili Zhang,et al.  Carbon-based materials as supercapacitor electrodes. , 2009, Chemical Society reviews.

[22]  Lei Wang,et al.  Porous carbon nanofiber–sulfur composite electrodes for lithium/sulfur cells , 2011 .

[23]  Fan Zhang,et al.  A Self‐Template Strategy for the Synthesis of Mesoporous Carbon Nanofibers as Advanced Supercapacitor Electrodes , 2011 .

[24]  Chang Liu,et al.  Advanced Materials for Energy Storage , 2010, Advanced materials.

[25]  Yunfeng Lu Surfactant-templated mesoporous materials: from inorganic to hybrid to organic. , 2006, Angewandte Chemie.

[26]  K. Domen,et al.  Three-dimensionally ordered mesoporous niobium oxide. , 2002, Journal of the American Chemical Society.

[27]  Jun Yan,et al.  Two-dimensional mesoporous carbon sheet-like framework material for high-rate supercapacitors , 2013 .

[28]  T. Tatsumi,et al.  Mesocellular Foam Carbons: Aggregates of Hollow Carbon Spheres with Open and Closed Wall Structures , 2004 .

[29]  Huichao Chen,et al.  High efficiency immobilization of sulfur on nitrogen-enriched mesoporous carbons for Li-S batteries. , 2013, ACS applied materials & interfaces.

[30]  Mingdeng Wei,et al.  MoO2-ordered mesoporous carbon nanocomposite as an anode material for lithium-ion batteries. , 2013, ACS applied materials & interfaces.

[31]  T. Lim,et al.  One-pot synthesis of intermetallic electrocatalysts in ordered, large-pore mesoporous carbon/silica toward formic acid oxidation. , 2012, ACS nano.

[32]  Jianlin Shi,et al.  An in situ carbonization-replication method to synthesize mesostructured WO3/C composite as nonprecious-metal anode catalyst in PEMFC. , 2013, Chemistry, an Asian journal.

[33]  Sol M Gruner,et al.  Ordered Mesoporous Materials from Metal Nanoparticle–Block Copolymer Self-Assembly , 2008, Science.

[34]  P. Taberna,et al.  Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer , 2006, Science.

[35]  Wen‐Cui Li,et al.  Rapid synthesis of foam-like mesoporous carbon monolith using an ultrasound-assisted air bubbling strategy , 2013 .

[36]  G. Centi,et al.  Synthesis and performance of platinum supported on ordered mesoporous carbons as catalyst for PEM fuel cells: Effect of the surface chemistry of the support , 2011 .

[37]  V. Pavlínek,et al.  Fabrication of polyaniline/mesoporous carbon/MnO2 ternary nanocomposites and their enhanced electrochemical performance for supercapacitors , 2012 .

[38]  M. Wu,et al.  Fabrication and electrocatalytic performance of highly stable and active platinum nanoparticles supported on nitrogen-doped ordered mesoporous carbons for oxygen reduction reaction , 2011 .

[39]  M. Jeon,et al.  Platinum Nanoclusters Studded in the Microporous Nanowalls of Ordered Mesoporous Carbon , 2005 .

[40]  P. Selvam,et al.  Synthesis, characterization and electrocatalytic properties of nano-platinum-supported mesoporous carbon molecular sieves, Pt/NCCR-41 , 2012 .

[41]  S. Hur,et al.  Ordered mesoporous carbon–carbon nanotube nanocomposites as highly conductive and durable cathode catalyst supports for polymer electrolyte fuel cells , 2013 .

[42]  Shuqin Song,et al.  A facile soft-template synthesis of ordered mesoporous carbon/tungsten carbide composites with high surface area for methanol electrooxidation , 2012 .

[43]  Juan Xu,et al.  Mesoporous carbon synthesized from dual colloidal silica/block copolymer template approach as the support of platinum nanoparticles for direct methanol fuel cells , 2013 .

[44]  G. Lu,et al.  3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. , 2008, Angewandte Chemie.

[45]  Hong-Xing Zhang,et al.  A novel soft template strategy to fabricate mesoporous carbon/graphene composites as high-performance supercapacitor electrodes , 2012 .

[46]  Shaoming Huang,et al.  Sulfur-nitrogen co-doped three-dimensional carbon foams with hierarchical pore structures as efficient metal-free electrocatalysts for oxygen reduction reactions. , 2013, Nanoscale.

[47]  J. Clark,et al.  Tuneable porous carbonaceous materials from renewable resources. , 2009, Chemical Society reviews.

[48]  K. Stevenson,et al.  High pseudocapacitance of MnO2 nanoparticles in graphitic disordered mesoporous carbon at high scan rates , 2012 .

[49]  L. Archer,et al.  Mesoporous silicon@carbon composites via nanoparticle-seeded dispersion polymerization and their application as lithium-ion battery anode materials , 2013 .

[50]  Yongyao Xia,et al.  Ordered Hierarchical Mesoporous/Microporous Carbon Derived from Mesoporous Titanium‐Carbide/Carbon Composites and its Electrochemical Performance in Supercapacitor , 2011 .

[51]  M. Chhowalla,et al.  Efficient metal-free electrocatalysts for oxygen reduction: polyaniline-derived N- and O-doped mesoporous carbons. , 2013, Journal of the American Chemical Society.

[52]  M. Jaroniec,et al.  Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. , 2012, Angewandte Chemie.

[53]  Gaoping Cao,et al.  FePO4 nanoparticles embedded in a large mesoporous carbon matrix as a high-capacity and high-rate cathode for lithium-ion batteries , 2013 .

[54]  Yang‐Kook Sun,et al.  Highly reversible conversion-capacity of MnOx-loaded ordered mesoporous carbon nanorods for lithium-ion battery anodes , 2012 .

[55]  D. Muller,et al.  Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. , 2013, Nature materials.

[56]  X. Tao,et al.  Highly mesoporous carbon foams synthesized by a facile, cost-effective and template-free Pechini method for advanced lithium–sulfur batteries , 2013 .

[57]  P. Fulvio,et al.  Towards the selective modification of soft-templated mesoporous carbon materials by elemental fluorine for energy storage devices , 2013 .

[58]  P. Fulvio,et al.  Fluorination of “brick and mortar” soft-templated graphitic ordered mesoporous carbons for high power lithium-ion battery , 2013 .

[59]  R. Mokaya,et al.  Ordered Mesoporous Carbon Monoliths: CVD Nanocasting and Hydrogen Storage Properties , 2007 .

[60]  Shou‐Heng Liu,et al.  Synthesis and characterization of platinum supported on surface-modified ordered mesoporous carbons by self-assembly and their electrocatalytic performance towards oxygen reduction reaction , 2012 .

[61]  Takeshi Kobayashi,et al.  All-solid-state Li–sulfur batteries with mesoporous electrode and thio-LISICON solid electrolyte , 2013 .

[62]  D. Muller,et al.  Infiltrating sulfur in hierarchical architecture MWCNT@meso C core-shell nanocomposites for lithium-sulfur batteries. , 2013, Physical chemistry chemical physics : PCCP.

[63]  X. Bo,et al.  Ordered mesoporous boron-doped carbons as metal-free electrocatalysts for the oxygen reduction reaction in alkaline solution. , 2013, Physical chemistry chemical physics : PCCP.

[64]  Alfred B. Anderson,et al.  O2 reduction on graphite and nitrogen-doped graphite: experiment and theory. , 2006, The journal of physical chemistry. B.

[65]  Shuqin Song,et al.  Effect of pore morphology of mesoporous carbons on the electrocatalytic activity of Pt nanoparticles for fuel cell reactions , 2010 .

[66]  Dingcai Wu,et al.  Nanoporous carbons with a 3D nanonetwork-interconnected 2D ordered mesoporous structure for rapid mass transport , 2013 .

[67]  Ran Liu,et al.  Heterogeneous nanostructured electrode materials for electrochemical energy storage. , 2011, Chemical communications.

[68]  B. Fang,et al.  Morphology-dependent Li storage performance of ordered mesoporous carbon as anode material. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[69]  Chang Yu,et al.  Efficient preparation of biomass-based mesoporous carbons for supercapacitors with both high energy density and high power density , 2013 .

[70]  K. Kuroda,et al.  The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials. , 1990 .

[71]  J. Ding,et al.  Mesoporous carbon decorated graphene as an efficient electrode material for supercapacitors , 2013 .

[72]  Z. Lei,et al.  Highly dispersed platinum supported on nitrogen-containing ordered mesoporous carbon for methanol electrochemical oxidation , 2009 .

[73]  Yongyao Xia,et al.  Ordered hierarchical mesoporous/microporous carbon with optimized pore structure for supercapacitors , 2013 .

[74]  Jianhua Zhou,et al.  CTAB assisted microwave synthesis of ordered mesoporous carbon supported Pt nanoparticles for hydrogen electro-oxidation , 2007 .

[75]  A. Lu,et al.  Synthesis of Polyacrylonitrile-Based Ordered Mesoporous Carbon with Tunable Pore Structures , 2004 .

[76]  Sang Hoon Joo,et al.  Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation , 1999 .

[77]  An‐Hui Lu,et al.  Toward highly stable electrocatalysts via nanoparticle pore confinement. , 2012, Journal of the American Chemical Society.

[78]  E. Roberts,et al.  Encapsulation of metal particles within the wall structure of mesoporous carbons. , 2005, Chemical communications.

[79]  Justin C. Lytle,et al.  Multifunctional 3D nanoarchitectures for energy storage and conversion. , 2009, Chemical Society reviews.

[80]  Dingsheng Yuan,et al.  Synthesis of graphitic mesoporous carbon from sucrose as a catalyst support for ethanol electro-oxidation , 2012 .

[81]  D. Zhao,et al.  Nitrogen-containing carbon spheres with very large uniform mesopores: The superior electrode materials for EDLC in organic electrolyte , 2007 .

[82]  Mingxian Liu,et al.  Nickel-Doped Activated Mesoporous Carbon Microspheres with Partially Graphitic Structure for Supercapacitors , 2013 .

[83]  S. Joo,et al.  Synthesis and characterization of mesoporous carbon for fuel cell applications , 2007 .

[84]  C. Liang,et al.  Mesoporous carbon materials: synthesis and modification. , 2008, Angewandte Chemie.

[85]  B. Fang,et al.  Ultra-high Li storage capacity achieved by hollow carbon capsules with hierarchical nanoarchitecture , 2011 .

[86]  Yang‐Kook Sun,et al.  Encapsulation of metal oxide nanocrystals into porous carbon with ultrahigh performances in lithium-ion battery. , 2013, ACS applied materials & interfaces.

[87]  Andreas Stein,et al.  Porous Electrode Materials for Lithium‐Ion Batteries – How to Prepare Them and What Makes Them Special , 2012 .

[88]  Wen‐Cui Li,et al.  Fabrication of superior-performance SnO2@C composites for lithium-ion anodes using tubular mesoporous carbon with thin carbon walls and high pore volume , 2012 .

[89]  Andreas Stein,et al.  Effects of Hierarchical Architecture on Electronic and Mechanical Properties of Nanocast Monolithic Porous Carbons and Carbon−Carbon Nanocomposites , 2006 .

[90]  Soojin Park,et al.  Easy synthesis of polyaniline-based mesoporous carbons and their high electrochemical performance , 2012 .

[91]  M. Jaroniec,et al.  Ordered mesoporous carbons , 2001 .

[92]  S. Specchia,et al.  Hybrid ordered mesoporous carbons doped with tungsten trioxide as supports for Pt electrocatalysts for methanol oxidation reaction , 2013 .

[93]  Taeghwan Hyeon,et al.  Recent Progress in the Synthesis of Porous Carbon Materials , 2006 .

[94]  Dingcai Wu,et al.  Reactive template-induced self-assembly to ordered mesoporous polymeric and carbonaceous materials. , 2013, ACS nano.

[95]  K. Ariga,et al.  Preparation and Characterization of Well‐Ordered Hexagonal Mesoporous Carbon Nitride , 2005 .

[96]  V. Presser,et al.  “Brick‐and‐Mortar” Self‐Assembly Approach to Graphitic Mesoporous Carbon Nanocomposites , 2011 .

[97]  Mietek Jaroniec,et al.  Graphitized pitch-based carbons with ordered nanopores synthesized by using colloidal crystals as templates. , 2005, Journal of the American Chemical Society.

[98]  L. Archer,et al.  Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. , 2011, Angewandte Chemie.

[99]  M. Vallet‐Regí,et al.  Easy synthesis of ordered mesoporous carbon containing nickel nanoparticles by a low temperature hydrothermal method , 2013 .

[100]  G. Chai,et al.  Synthesis of Ordered, Uniform, Macroporous Carbons with Mesoporous Walls Templated by Aggregates of Polystyrene Spheres and Silica Particles for Use as Catalyst Supports in Direct Methanol Fuel Cells , 2004 .

[101]  Guozhong Cao,et al.  Li4Ti5O12 Nanoparticles Embedded in a Mesoporous Carbon Matrix as a Superior Anode Material for High Rate Lithium Ion Batteries , 2012 .

[102]  N. Yufa,et al.  Triblock‐Terpolymer‐Directed Self‐Assembly of Mesoporous TiO2: High‐Performance Photoanodes for Solid‐State Dye‐Sensitized Solar Cells , 2012 .

[103]  Hairong Xue,et al.  Novel synthesis of reduced graphene oxide-ordered mesoporous carbon composites and their application in electrocatalysis , 2013 .

[104]  M. Jaroniec,et al.  Silica gel-templated mesoporous carbons prepared from mesophase pitch and polyacrylonitrile , 2001 .

[105]  Jong-Sung Yu,et al.  Ordered Hierarchical Nanostructured Carbon as a Highly Efficient Cathode Catalyst Support in Proton Exchange Membrane Fuel Cell , 2009 .

[106]  Wei Luo,et al.  Controlled synthesis of mesoporous MnO/C networks by microwave irradiation and their enhanced lithium-storage properties. , 2013, ACS applied materials & interfaces.

[107]  S. Rodrigues,et al.  Mesoporous Nitrogen‐Doped Carbon‐LiSICON Glass Ceramics as High Performance Cathodes in Solid‐State Lithium–Oxygen Batteries , 2013 .

[108]  Gi‐Heon Kim,et al.  Fe3O4 Nanoparticles Confined in Mesocellular Carbon Foam for High Performance Anode Materials for Lithium‐Ion Batteries , 2011 .

[109]  Longwei Yin,et al.  Three-dimensional nanohybrids of Mn3O4/ordered mesoporous carbons for high performance anode materials for lithium-ion batteries , 2012 .

[110]  Li-Jun Wan,et al.  Nanocarbon networks for advanced rechargeable lithium batteries. , 2012, Accounts of chemical research.

[111]  T. Kyotani,et al.  Templated Nanocarbons for Energy Storage , 2012, Advanced materials.

[112]  L. Nazar,et al.  Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries. , 2012, Angewandte Chemie.

[113]  Xuecheng Chen,et al.  CVD generated mesoporous hollow carbon spheres as supercapacitors , 2012 .

[114]  Hao Jiang,et al.  Mesoporous Carbon Incorporated Metal Oxide Nanomaterials as Supercapacitor Electrodes , 2012, Advanced materials.

[115]  D. Zhao,et al.  Carbon Materials for Chemical Capacitive Energy Storage , 2011, Advanced materials.

[116]  J. Choma,et al.  Polymer-templated mesoporous carbons synthesized in the presence of nickel nanoparticles, nickel oxide nanoparticles, and nickel nitrate , 2012 .

[117]  H. Qiao,et al.  Sonochemical synthesis of ordered SnO₂/CMK-3 nanocomposites and their lithium storage properties. , 2011, ACS applied materials & interfaces.

[118]  Seung M. Oh,et al.  Direct Access to Mesoporous Crystalline TiO2/Carbon Composites with Large and Uniform Pores for Use as Anode Materials in Lithium Ion Batteries , 2011 .

[119]  L. Monconduit,et al.  Nanoconfined phosphorus in mesoporous carbon as an electrode for Li-ion batteries: performance and mechanism , 2012 .

[120]  D. Zhao,et al.  Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage. , 2013, Journal of the American Chemical Society.

[121]  Alexander Kvit,et al.  High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon. , 2010, ACS nano.

[122]  H. Ahn,et al.  Mesoporous LiFePO4/C Nanocomposite Cathode Materials for High Power Lithium Ion Batteries with Superior Performance , 2010, Advanced materials.

[123]  Jing Wei,et al.  A Controllable Synthesis of Rich Nitrogen‐Doped Ordered Mesoporous Carbon for CO2 Capture and Supercapacitors , 2013 .

[124]  Xingcheng Xiao,et al.  Sn/SnO2 embedded in mesoporous carbon nanocomposites as negative electrode for lithium ion batteries , 2013 .

[125]  D. Zhao,et al.  Synthesis of mesoporous carbon spheres with a hierarchical pore structure for the electrochemical double-layer capacitor , 2011 .

[126]  Li-Jun Wan,et al.  LiFePO4 Nanoparticles Embedded in a Nanoporous Carbon Matrix: Superior Cathode Material for Electrochemical Energy‐Storage Devices , 2009, Advanced materials.

[127]  T. Bein,et al.  Conducting Carbon Wires in Ordered, Nanometer-Sized Channels , 1994, Science.

[128]  Mingzhi Dai,et al.  Ordered Mesoporous Carbon Composite Films Containing Cobalt Oxide and Vanadia for Electrochemical Applications , 2011 .

[129]  Chi-Chang Hu,et al.  Mesoporous Carbon Incorporated with In2O3 Nanoparticles as High‐Performance Supercapacitors , 2013 .

[130]  D. Zhao,et al.  Synthesis of ordered mesoporous carbon monoliths with bicontinuous cubic pore structure of Ia3d symmetry. , 2002, Chemical communications.

[131]  Yueping Fang,et al.  Close-packed mesoporous carbon polyhedrons derived from colloidal carbon microspheres for electrochemical energy storage applications , 2012 .

[132]  Yongcai Qiu,et al.  Ultrafine tin nanocrystallites encapsulated in mesoporous carbon nanowires: scalable synthesis and excellent electrochemical properties for rechargeable lithium ion batteries. , 2010, Chemical communications.

[133]  Honglai Liu,et al.  A novel synthesis of mesoporous carbon microspheres for supercapacitor electrodes , 2011 .

[134]  D. Zhao,et al.  "Host-guest" chemistry in the synthesis of ordered nonsiliceous mesoporous materials. , 2006, Accounts of chemical research.

[135]  S. Woo,et al.  Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity. , 2012, ACS nano.

[136]  Lili Zhang,et al.  Mesoporous carbon nanospheres with an excellent electrocapacitive performance , 2011 .

[137]  Meryl D. Stoller,et al.  Review of Best Practice Methods for Determining an Electrode Material's Performance for Ultracapacitors , 2010 .

[138]  D. Bhattacharjya,et al.  Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media. , 2012, Journal of the American Chemical Society.

[139]  Fujun Li,et al.  Carbonization over PFA-protected dispersed platinum: an effective route to synthesize high performance mesoporous-carbon supported Pt electrocatalysts , 2011 .

[140]  Guozhong Cao,et al.  Three-dimensional coherent titania-mesoporous carbon nanocomposite and its lithium-ion storage properties. , 2012, ACS applied materials & interfaces.

[141]  Jinwoo Lee,et al.  Highly Improved Rate Capability for a Lithium‐Ion Battery Nano‐Li4Ti5O12 Negative Electrode via Carbon‐Coated Mesoporous Uniform Pores with a Simple Self‐Assembly Method , 2011 .

[142]  Jun Chen,et al.  Carbon nanotube architectures as catalyst supports for proton exchange membrane fuel cells , 2010 .

[143]  O. Terasaki,et al.  Transition Metal Ion-Chelating Ordered Mesoporous Carbons as Noble Metal-Free Fuel Cell Catalysts , 2013 .

[144]  L. Hou,et al.  Facile synthesis of mesoporous carbon nanofibres towards high-performance electrochemical capacitors , 2013 .

[145]  Weifeng Wei,et al.  Manganese oxide-based materials as electrochemical supercapacitor electrodes. , 2011, Chemical Society reviews.

[146]  Dongyuan Zhao,et al.  Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation. , 2005, Angewandte Chemie.

[147]  X. Zhao,et al.  Intercalation of mesoporous carbon spheres between reduced graphene oxide sheets for preparing high-rate supercapacitor electrodes , 2011 .

[148]  Qiang Sun,et al.  High sulfur loading cathodes fabricated using peapodlike, large pore volume mesoporous carbon for lithium-sulfur battery. , 2013, ACS applied materials & interfaces.

[149]  Xiulei Ji,et al.  Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes. , 2010, Nature chemistry.

[150]  F. Yan,et al.  Nitrogen-doped mesoporous carbons originated from ionic liquids as electrode materials for supercapacitors , 2013 .

[151]  G. Yushin,et al.  High-performance lithium-ion anodes using a hierarchical bottom-up approach. , 2010, Nature materials.

[152]  M. Oschatz,et al.  A new route for the preparation of mesoporous carbon materials with high performance in lithium-sulphur battery cathodes. , 2013, Chemical communications.

[153]  Daniel J. Berger,et al.  Fuel Cells and Precious-Metal Catalysts , 1999, Science.

[154]  D. Zhao,et al.  A comprehensive study on KOH activation of ordered mesoporous carbons and their supercapacitor application , 2012 .

[155]  D. Zhao,et al.  A general chelate-assisted co-assembly to metallic nanoparticles-incorporated ordered mesoporous carbon catalysts for Fischer-Tropsch synthesis. , 2012, Journal of the American Chemical Society.

[156]  Jun Liu,et al.  Optimization of mesoporous carbon structures for lithium–sulfur battery applications , 2011 .

[157]  Yu‐Guo Guo,et al.  Facile synthesis of MoS2@CMK-3 nanocomposite as an improved anode material for lithium-ion batteries. , 2012, Nanoscale.

[158]  Hairong Xue,et al.  Structural and electrochemical characterization of ordered mesoporous carbon-reduced graphene oxide nanocomposites , 2012 .

[159]  Mingdeng Wei,et al.  Ordered mesoporous TiO2–C nanocomposite as an anode material for long-term performance lithium-ion batteries , 2013 .

[160]  M. Titirici,et al.  Polypyrrole-derived mesoporous nitrogen-doped carbons with intrinsic catalytic activity in the oxygen reduction reaction , 2013 .

[161]  M. Chi,et al.  Soft‐Templated Mesoporous Carbon‐Carbon Nanotube Composites for High Performance Lithium‐ion Batteries , 2011, Advanced materials.

[162]  L. Nazar,et al.  Simple synthesis of graphitic ordered mesoporous carbon materials by a solid-state method using metal phthalocyanines. , 2009, Angewandte Chemie.

[163]  Chunzhong Li,et al.  Functional mesoporous carbon nanotubes and their integration in situ with metal nanocrystals for enhanced electrochemical performances. , 2011, Chemical communications.

[164]  Guangshuai Han,et al.  Phenol-formaldehyde carbon with ordered/disordered bimodal mesoporous structure as high-performance electrode materials for supercapacitors , 2013 .

[165]  D. Zhao,et al.  Syntheses of polyaniline/ordered mesoporous carbon composites with interpenetrating framework and th , 2011 .

[166]  M. Engelhard,et al.  Functional mesoporous carbon built from the 1,10-phenanthroline building block: A new class of catalyst support , 2007 .

[167]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[168]  Tae-Wan Kim,et al.  A synthetic route to ordered mesoporous carbon materials with graphitic pore walls. , 2003, Angewandte Chemie.

[169]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[170]  Kyu-Nam Jung,et al.  High Performance N-Doped Mesoporous Carbon Decorated TiO2 Nanofibers as Anode Materials for Lithium-Ion Batteries , 2013 .

[171]  Bruce Dunn,et al.  General method for the synthesis of hierarchical nanocrystal-based mesoporous materials. , 2012, ACS nano.

[172]  Dustin Banham,et al.  First time investigation of Pt nanocatalysts deposited inside carbon mesopores of controlled length and diameter , 2012 .

[173]  J. B. Higgins,et al.  A new family of mesoporous molecular sieves prepared with liquid crystal templates , 1992 .

[174]  D. Zhao,et al.  Ordered mesoporous graphitized pyrolytic carbon materials: synthesis, graphitization, and electrochemical properties , 2012 .

[175]  Li Lu,et al.  A high-energy-density supercapacitor with graphene–CMK-5 as the electrode and ionic liquid as the electrolyte , 2013 .

[176]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[177]  Y. Tong,et al.  Mesoporous MnO2/carbon aerogel composites as promising electrode materials for high-performance supercapacitors. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[178]  M. Coppens,et al.  Ordered mesoporous carbon with tunable, unusually large pore size and well-controlled particle morphology , 2011 .

[179]  Chi-Yeong Ahn,et al.  Effects of ionomer content on Pt catalyst/ordered mesoporous carbon support in polymer electrolyte membrane fuel cells , 2013 .

[180]  H. Abruña,et al.  One-pot synthesis of platinum-based nanoparticles incorporated into mesoporous niobium oxide-carbon composites for fuel cell electrodes. , 2009, Journal of the American Chemical Society.