Meta-theoretical Properties of : a Left-linear Variant of Meta-theoretical Properties of : a Left-linear Variant Of

In this paper we consider explicit substitutions calculi that allow open terms. In particular, we propose a variant of the-calculus, that we call. For this calculus and its simply-typed version, we study its meta-theoretical properties. The-calculus enjoys the same general characteristics as , i.e. a simple and nitary rst-order presentation, connuent on terms with meta-variables, with a composition operator and with simultaneous substitutions. However, does not have the non-left-linear surjective pairing rule of which raises technical problems in some frameworks. Propri et es m eta-th eoriques de : Une variante lin eaire a gauche de R esum e : Dans cet article, on s'int eresse aux calculs avec substitutions explicites qui admettent des termes avec des m eta-variables. En particulier, on propose une variante du-calcul, qu'on appelle. Pour la version pure et pour la version simplement typ ee de ce calcul on etudie les propri et es m eta-th eoriques. Le calcul satisfait les m^ emes propri et es g en erales de , c'est-a-dire: une pr esentation simple, nitaire et de premier ordre, connuent pour les termes avec des m eta-variables avec des op erateurs de composition et de substitutions simultan ees. Mais ne comporte pas la r egle non-lin eaire de qui pose des probl emes techniques dans certaines applications.

[1]  Herman Geuvers,et al.  A short and flexible proof of Strong Normalization for the Calculus of Constructions , 1994, TYPES.

[2]  CurienPierre-Louis,et al.  Confluence properties of weak and strong calculi of explicit substitutions , 1996 .

[3]  Paul-Andr Typed -calculi with Explicit Substitutions May Not Terminate , 1995 .

[4]  Delia Kesner,et al.  -calculi with Explicit Substitutions and Weak Composition Which Preserve -strong Normalization , 1996 .

[5]  Fairouz Kamareddine,et al.  A -calculus a La De Bruijn with Explicit Substitutions 7th International Conference on Programming Languages: Implementations, Logics and Programs, Plilp95, Lncs 982, Pages 45-62 , 1995 .

[6]  M. Schmidt-Schauβ Computational Aspects of an Order-Sorted Logic with Term Declarations , 1989 .

[7]  Thérèse Hardin,et al.  Proof of termination of the rewriting system subst on CCL , 1986, Theor. Comput. Sci..

[8]  Teruo Hikita,et al.  A Rewriting System for Categorical Combinators with Multiple Arguments , 1990, SIAM J. Comput..

[9]  C. Kirchner,et al.  Higher-order unification via explicit substitutions Extended Abstract , 1995, LICS 1995.

[10]  C. J. Bloo,et al.  Preservation of strong normalisation in named lambda calculi with explicit substitution and garbage collection , 1995 .

[11]  Pierre Lescanne,et al.  Explicit Substitutions with de Bruijn's Levels , 1995, RTA.

[12]  Claude Kirchner,et al.  Higher-Order Equational Unification via Explicit Substitutions , 1997, ALP/HOA.

[13]  Pierre Lescanne,et al.  From λσ to λν: a journey through calculi of explicit substitutions , 1994, POPL '94.

[14]  Delia Kesner,et al.  Confluence Properties of Extensional and Non-Extensional lambda-Calculi with Explicit Substitutions (Extended Abstract) , 1996, RTA.

[15]  Hans Zantema,et al.  Termination of Term Rewriting: Interpretation and Type Elimination , 1994, J. Symb. Comput..