Meta-theoretical Properties of : a Left-linear Variant of Meta-theoretical Properties of : a Left-linear Variant Of
暂无分享,去创建一个
[1] Herman Geuvers,et al. A short and flexible proof of Strong Normalization for the Calculus of Constructions , 1994, TYPES.
[2] CurienPierre-Louis,et al. Confluence properties of weak and strong calculi of explicit substitutions , 1996 .
[3] Paul-Andr. Typed -calculi with Explicit Substitutions May Not Terminate , 1995 .
[4] Delia Kesner,et al. -calculi with Explicit Substitutions and Weak Composition Which Preserve -strong Normalization , 1996 .
[5] Fairouz Kamareddine,et al. A -calculus a La De Bruijn with Explicit Substitutions 7th International Conference on Programming Languages: Implementations, Logics and Programs, Plilp95, Lncs 982, Pages 45-62 , 1995 .
[6] M. Schmidt-Schauβ. Computational Aspects of an Order-Sorted Logic with Term Declarations , 1989 .
[7] Thérèse Hardin,et al. Proof of termination of the rewriting system subst on CCL , 1986, Theor. Comput. Sci..
[8] Teruo Hikita,et al. A Rewriting System for Categorical Combinators with Multiple Arguments , 1990, SIAM J. Comput..
[9] C. Kirchner,et al. Higher-order unification via explicit substitutions Extended Abstract , 1995, LICS 1995.
[10] C. J. Bloo,et al. Preservation of strong normalisation in named lambda calculi with explicit substitution and garbage collection , 1995 .
[11] Pierre Lescanne,et al. Explicit Substitutions with de Bruijn's Levels , 1995, RTA.
[12] Claude Kirchner,et al. Higher-Order Equational Unification via Explicit Substitutions , 1997, ALP/HOA.
[13] Pierre Lescanne,et al. From λσ to λν: a journey through calculi of explicit substitutions , 1994, POPL '94.
[14] Delia Kesner,et al. Confluence Properties of Extensional and Non-Extensional lambda-Calculi with Explicit Substitutions (Extended Abstract) , 1996, RTA.
[15] Hans Zantema,et al. Termination of Term Rewriting: Interpretation and Type Elimination , 1994, J. Symb. Comput..