Continuation of Point Clouds via Persistence Diagrams

Abstract In this paper, we present a mathematical and algorithmic framework for the continuation of point clouds by persistence diagrams. A key property used in the method is that the persistence map, which assigns a persistence diagram to a point cloud, is differentiable. This allows us to apply the Newton–Raphson continuation method in this setting. Given an original point cloud P , its persistence diagram D , and a target persistence diagram D ′ , we gradually move from D to D ′ , by successively computing intermediate point clouds until we finally find a point cloud P ′ having D ′ as its persistence diagram. Our method can be applied to a wide variety of situations in topological data analysis where it is necessary to solve an inverse problem, from persistence diagrams to point cloud data.

[1]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[2]  E. Allgower,et al.  Introduction to Numerical Continuation Methods , 1987 .

[3]  M. Gameiro,et al.  Topological Measurement of Protein Compressibility via Persistence Diagrams , 2012 .

[4]  Jean-Daniel Boissonnat,et al.  The stability of Delaunay Triangulations , 2013, Int. J. Comput. Geom. Appl..

[5]  David Cohen-Steiner,et al.  Vines and vineyards by updating persistence in linear time , 2006, SCG '06.

[6]  Ulrich Bauer,et al.  A stable multi-scale kernel for topological machine learning , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Ulrich Bauer,et al.  Clear and Compress: Computing Persistent Homology in Chunks , 2013, Topological Methods in Data Analysis and Visualization.

[8]  Emerson G. Escolar,et al.  Hierarchical structures of amorphous solids characterized by persistent homology , 2015, Proceedings of the National Academy of Sciences.

[9]  Pierre Alliez,et al.  CGAL - The Computational Geometry Algorithms Library , 2011 .

[10]  Peter Bubenik,et al.  Statistical topological data analysis using persistence landscapes , 2012, J. Mach. Learn. Res..

[11]  Vin de Silva,et al.  Coverage in sensor networks via persistent homology , 2007 .

[12]  Adi Ben-Israel A modified newton-raphson method for the solution of systems of equations , 1965 .

[13]  Emerson G. Escolar,et al.  Persistent homology and many-body atomic structure for medium-range order in the glass , 2015, Nanotechnology.

[14]  Gunnar E. Carlsson,et al.  Topology and data , 2009 .

[15]  Afra Zomorodian,et al.  Computing Persistent Homology , 2004, SCG '04.

[16]  Akihiko Hirata,et al.  Description of Medium-Range Order in Amorphous Structures by Persistent Homology , 2015 .

[17]  William H. Offenhauser,et al.  Wild Boars as Hosts of Human-Pathogenic Anaplasma phagocytophilum Variants , 2012, Emerging infectious diseases.

[18]  Konstantin Mischaikow,et al.  Morse Theory for Filtrations and Efficient Computation of Persistent Homology , 2013, Discret. Comput. Geom..

[19]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[20]  Adi Ben-Israel A Newton-Raphson method for the solution of systems of equations , 1966 .

[21]  M. Gameiro,et al.  A topological measurement of protein compressibility , 2014, Japan Journal of Industrial and Applied Mathematics.

[22]  T. O’Neil Geometric Measure Theory , 2002 .

[23]  B. Krauskopf,et al.  Numerical Continuation Methods for Dynamical Systems: Path following and boundary value problems , 2007 .

[24]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[25]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[26]  Pierre Alliez,et al.  Computational geometry algorithms library , 2008, SIGGRAPH '08.

[27]  Steve Oudot,et al.  Persistence stability for geometric complexes , 2012, ArXiv.

[28]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[29]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1992, VVS.

[30]  Adi Ben-Israel,et al.  Generalized inverses: theory and applications , 1974 .