Relativistic effects in HgHe and HgXe CCSD(T) ground state potential curves. Low‐density viscosity simulations of Hg:Xe mixture

The comparison of coupled cluster with single and double excitations and with perturbative correction of triple excitations [CCSD(T)] ground state potential curves of mercury with rare gases (RG): HgHe and HgXe, at several levels of theory is presented. The scalar relativistic (REL) effects and spin‐orbit coupling effects in the ground state potential curves of these weakly bounded dimers are considered. The CCSD(T) ground state potential curves at the level of the Dirac‐Coulomb Hamiltonian (DCH) are compared with CCSD(T) curves at the level of 4‐component spin‐free modified DCH, the scalar 2nd order Douglas‐Kroll‐Hess (DKH2) and the nonrelativistic (NR‐LL) (Lévy‐Leblond) Hamiltonian. In addition, London‐Drude formula and SCF interaction energy curves are employed in the analysis of different contributions of REL effects in dissociation energies of HgRG and Hg2 dimers. Moreover, the large anharmonicity of the HgHe ground state potential curve is highlighted. The computationally less demanding scalar DKH2 Hamiltonian is employed to calculate the HgXe, Hg2, and Xe2 all electron CCSD(T) ground state potential curves in highly augmented quadruple zeta basis sets. These potential curves are used to simulate the shear viscosity of mercury, xenon, and mercury‐xenon (Hg:Xe) mixture. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011

[1]  Peter Schwerdtfeger,et al.  Properties of small- to medium-sized mercury clusters from a combined ab initio, density-functional, and simulated-annealing study. , 2002, Physical review letters.

[2]  Hess,et al.  Applicability of the no-pair equation with free-particle projection operators to atomic and molecular structure calculations. , 1985, Physical review. A, General physics.

[3]  J. Kestin,et al.  The viscosity of fluid mercury to 1520 K and 1000 bar , 1975 .

[4]  F. Calvo,et al.  A highly accurate potential energy curve for the mercury dimer. , 2010, The Journal of chemical physics.

[5]  K. Fuke,et al.  Interatomic potentials of HgXe van der Waals complex formed in supersonic jets as studied by laser induced fluorescence spectroscopy , 1986 .

[6]  M. Morse Clusters of transition-metal atoms , 1986 .

[7]  S. Ceccherini,et al.  Interatomic potentials of group IIB atoms (ground state) , 2001 .

[8]  Paweł Sałek,et al.  Dalton, a molecular electronic structure program , 2005 .

[9]  B. A. Hess,et al.  Relativistic effects on electric properties of many‐electron systems in spin‐averaged Douglas–Kroll and Pauli approximations , 1996 .

[10]  Lucas Visscher,et al.  Approximate molecular relativistic Dirac-Coulomb calculations using a simple Coulombic correction , 1997 .

[11]  T. Zwier,et al.  Spectroscopic studies of the HgHe and HgAr2 van der Waals' complexes: The Hg vapor fluorescence filter , 1989 .

[12]  David E. Woon,et al.  Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties , 1994 .

[13]  J. Koperski,et al.  Molecular beam spectroscopy of the and transitions in Hg2 , 1994 .

[14]  Marvin Douglas,et al.  Quantum electrodynamical corrections to the fine structure of helium , 1971 .

[15]  F. Calvo,et al.  Accurate melting temperatures for neon and argon from ab initio Monte Carlo simulations. , 2008, Angewandte Chemie.

[16]  P. Hobza Chapter 7. Accurate ab initio calculations on large van der Waals clusters , 1996 .

[17]  M. Castex Experimental determination of the lowest excited Xe2 molecular states from VUV absorption spectra , 1981 .

[18]  M. Dolg,et al.  Covalent contributions to bonding in group 12 dimers M2 (Mn = Zn, Cd, Hg) , 1997 .

[19]  N. Runeberg,et al.  Relativistic pseudopotential calculations on Xe2, RnXe, and Rn2: The van der Waals properties of radon † , 1998 .

[20]  Ashok Kumar,et al.  Integrated dipole oscillator strengths and dipole properties for Ne, Ar, Kr, Xe, HF, HCl, and HBr , 1985 .

[21]  K. Dyall Relativistic Quadruple-Zeta and Revised Triple-Zeta and Double-Zeta Basis Sets for the 4p, 5p, and 6p Elements , 2006 .

[22]  Vladimír Lukes,et al.  On relativistic effects in ground state potential curves of Zn2, Cd2, and Hg2 dimers. A CCSD(T) study , 2009, J. Comput. Chem..

[23]  Graham Richards,et al.  Intermolecular forces , 1978, Nature.

[24]  J. Koperski,et al.  The 0+u(6 3P1)←X0+g spectrum of Hg2 excited in a supersonic jet , 1994 .

[25]  M. Dolg,et al.  GROUND STATE PROPERTIES OF HG2. 1. A PSEUDOPOTENTIAL CONFIGURATION INTERACTION STUDY , 1996 .

[26]  Pavel Hobza,et al.  Intermolecular interactions between medium-sized systems. Nonempirical and empirical calculations of interaction energies. Successes and failures , 1988 .

[27]  Cristina Puzzarini,et al.  Systematically convergent basis sets for transition metals. II. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements , 2005 .

[28]  K. Dyall An exact separation of the spin‐free and spin‐dependent terms of the Dirac–Coulomb–Breit Hamiltonian , 1994 .

[29]  P. Pyykkö,et al.  The polarisability of Hg and the ground-state interaction potential of Hg2 , 1994 .

[30]  J. Koperski Study of diatomic van der Waals complexes in supersonic beams , 2002 .

[31]  U. Hohm,et al.  DIPOLE POLARIZABILITY, CAUCHY MOMENTS, AND RELATED PROPERTIES OF HG , 1996 .

[32]  H. Nakazawa,et al.  Interatomic potentials of HgKr and HgXe van der Waals complexes in the A 30+ and B 31 states. Revisited , 1990 .

[33]  Richard J. Sadus,et al.  Molecular simulation of the vapor–liquid coexistence of mercury , 2003 .

[34]  Christian F. Kunz,et al.  Ab initio study of the individual interaction energy components in the ground state of the mercury dimer , 1996 .

[35]  Vladimír Lukes,et al.  On the structure and physical origin of van der Waals interaction in zinc, cadmium and mercury dimers , 2006 .

[36]  T. Helgaker,et al.  Static and frequency-dependent dipole-dipole polarizabilities of all closed-shell atoms up to radium: a four-component relativistic DFT study. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[37]  H. Werner,et al.  A short-range gradient-corrected density functional in long-range coupled-cluster calculations for rare gas dimers. , 2005, Physical Chemistry, Chemical Physics - PCCP.

[38]  Charles M. Atkinson Music and meaning in "Clangat hodie" , 1993 .

[39]  B. D. Todd,et al.  Molecular simulation of the shear viscosity and the self-diffusion coefficient of mercury along the vapor-liquid coexistence curve. , 2005, The Journal of chemical physics.

[40]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[41]  A. G. Gaydon,et al.  Handbook of Chemistry and Physics 47th edition , 1967 .

[42]  H. Stoll,et al.  Calculation of ground- and excited-state potential energy curves for the Hg2 molecule in a pseudopotential approach , 1997 .

[43]  Jean-Marc Lévy-Leblond,et al.  Nonrelativistic particles and wave equations , 1967 .

[44]  K. Dyall Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 5d elements Hf–Hg , 2004 .

[45]  Markus Reiher,et al.  The generalized Douglas–Kroll transformation , 2002 .

[46]  M. Urban,et al.  Dimers of rare gas atoms: CCSD(T), CCSDT and FCI calculations on the (He)2 dimer, CCSD(T) and CCSDT calculations on the (Ne)2 dimer, and CCSD(T) all-electron and pseudopotential calculations on the dimers from (Ne)2 through (Xe)2 , 1996 .

[47]  P. Schwerdtfeger,et al.  The potential energy curve and dipole polarizability tensor of mercury dimer , 2001 .

[48]  P. Schwerdtfeger,et al.  From the van der Waals dimer to the solid state of mercury with relativistic ab initio and density functional theory , 2006 .

[49]  W. M. Dale Temperature, Its Measurement and Control in Science and Industry , 1963 .

[50]  M. Klobukowski,et al.  Model potential study of the interactions in Ar2, Kr2 and Xe2 dimers , 1984 .

[51]  K. Tang,et al.  A combining rule calculation of the ground state van der Waals potentials of the mercury rare-gas complexes. , 2009, The Journal of chemical physics.

[52]  Vladimír Lukes,et al.  On the Viscosity and Physical Origin of Stability of Weakly Bound Complexes CdZn, HgZn and HgCd , 2007 .

[53]  U. Hohm,et al.  Temperature dependence of the dipole polarizability of xenon (1S0) due to dynamic non-resonant Stark effect caused by black-body radiation , 1994 .

[54]  F. Calvo,et al.  The importance of accurate interaction potentials in the melting of argon nanoclusters , 2009 .

[55]  Lindsey J. Munro,et al.  An interatomic potential for mercury dimer , 2001 .

[56]  K. Fægri Even tempered basis sets for four-component relativistic quantum chemistry , 2005 .

[57]  K. Yamanouchi,et al.  Interatomic potentials of A 30+ and B 31 states of HgHe, HgNe, and HgAr van der Waals complexes , 1988 .